title |
slug |
url |
aliases |
Connector Phase |
Connector Phase ZH |
coagent/connector-phase-zh |
/coagent/connector-phase-zh |
|
快速构建一个 agent phase
- 首先增加openai配置,也可以是其它类似于openai接口的模型(通过fastchat启动)
from coagent.base_configs.env_config import JUPYTER_WORK_PATH, KB_ROOT_PATH
from coagent.llm_models.llm_config import EmbedConfig, LLMConfig
from coagent.connector.configs import AGETN_CONFIGS
from coagent.connector.phase import BasePhase
from coagent.connector.schema import Message, load_role_configs
os.environ["API_BASE_URL"] = OPENAI_API_BASE
os.environ["OPENAI_API_KEY"] = "sk-xx"
openai.api_key = "sk-xxx"
# os.environ["OPENAI_PROXY"] = "socks5h://127.0.0.1:13659"
os.environ["DUCKDUCKGO_PROXY"] = os.environ.get("DUCKDUCKGO_PROXY") or "socks5://127.0.0.1:13659"
- 配置相关 LLM 和 Embedding Model
# LLM 和 Embedding Model 配置
llm_config = LLMConfig(
model_name="gpt-3.5-turbo", model_device="cpu",api_key=os.environ["OPENAI_API_KEY"],
api_base_url=os.environ["API_BASE_URL"], temperature=0.3
)
embed_config = EmbedConfig(
embed_engine="model", embed_model="text2vec-base-chinese",
embed_model_path="D://project/gitlab/llm/external/ant_code/Codefuse-chatbot/embedding_models/text2vec-base-chinese"
)
- 这里从已有的 phase 配置中选一个 phase 来做示例
# log-level,print prompt和llm predict
os.environ["log_verbose"] = "2"
phase_name = "searchChatPhase"
phase = BasePhase(
phase_name, embed_config=embed_config, llm_config=llm_config,
)
# round-1
query_content1 = "美国当前总统是谁?"
query = Message(
role_name="human", role_type="user",
role_content=query_content1, input_query=query_content1, origin_query=query_content1,
search_engine_name="duckduckgo", score_threshold=1.0, top_k=3
)
output_message, output_memory = phase.step(query)
print(output_memory.to_str_messages(return_all=True, content_key="parsed_output_list"))
# round-2
query_content2 = "美国上一任总统是谁,两个人有什么关系没?"
query = Message(
role_name="human", role_type="user",
role_content=query_content2, input_query=query_content2, origin_query=query_content2,
search_engine_name="duckduckgo", score_threshold=1.0, top_k=3
)
output_message, output_memory = phase.step(query)
print(output_memory.to_str_messages(return_all=True, content_key="parsed_output_list"))
Phase 参数配置
Config Key Name |
Type |
Description |
phase_name |
String |
场景名称 |
phase_config |
CompletePhaseConfig |
默认为None,可直接指定完整的phaseconfig, 暂未实现 |
llm_config |
LLMConfig |
大语言模型配置 |
embed_config |
EmbedConfig |
向量模型配置 |
sandbox_server |
Dict |
沙盒环境即notebook启动配置 |
jupyter_work_path |
str |
沙盒环境的工作目录 |
kb_root_path |
str |
memory的存储路径 |
log_verbose |
str |
agent prompt&predict的日志打印级别 |
base_phase_config |
Union[dict, str] |
默认配置:PHASE_CONFIGS,可通过实现对这个变量新增来实现自定义配置 |
base_chain_config |
Union[dict, str] |
默认配置:CHAIN_CONFIGS,可通过实现对这个变量新增来实现自定义配置 |
base_role_config |
Union[dict, str] |
默认配置:AGETN_CONFIGS,可通过实现对这个变量新增来实现自定义配置 |