codefuse-chatbot/examples/agent_examples/baseGroupPhase_example.py

43 lines
1.8 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import os, sys
src_dir = os.path.join(
os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
)
sys.path.append(src_dir)
from configs.model_config import KB_ROOT_PATH, JUPYTER_WORK_PATH, LLM_MODEL
from configs.server_config import SANDBOX_SERVER
from coagent.tools import toLangchainTools, TOOL_DICT, TOOL_SETS
from coagent.llm_models.llm_config import EmbedConfig, LLMConfig
from coagent.connector.phase import BasePhase
from coagent.connector.schema import Message
#
tools = toLangchainTools([TOOL_DICT[i] for i in TOOL_SETS if i in TOOL_DICT])
# log-levelprint prompt和llm predict
os.environ["log_verbose"] = "2"
phase_name = "baseGroupPhase"
llm_config = LLMConfig(
model_name=LLM_MODEL, api_key=os.environ["OPENAI_API_KEY"],
api_base_url=os.environ["API_BASE_URL"], temperature=0.3
)
embed_config = EmbedConfig(
embed_engine="model", embed_model="text2vec-base-chinese",
embed_model_path=os.path.join(src_dir, "embedding_models/text2vec-base-chinese")
)
phase = BasePhase(
phase_name, sandbox_server=SANDBOX_SERVER, jupyter_work_path=JUPYTER_WORK_PATH,
embed_config=embed_config, llm_config=llm_config, kb_root_path=KB_ROOT_PATH,
)
# round-1
query_content = "确认本地是否存在employee_data.csv并查看它有哪些列和数据类型;然后画柱状图"
# query_content = "帮我确认下127.0.0.1这个服务器的在10点是否存在异常请帮我判断一下"
query = Message(
role_name="human", role_type="user", tools=[],
role_content=query_content, input_query=query_content, origin_query=query_content,
)
# phase.pre_print(query)
output_message, output_memory = phase.step(query)
print(output_memory.to_str_messages(return_all=True, content_key="parsed_output_list"))