codefuse-chatbot/examples/agent_examples/baseGroupPhase_example.py

43 lines
1.8 KiB
Python
Raw Permalink Normal View History

import os, sys
src_dir = os.path.join(
os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
)
sys.path.append(src_dir)
from configs.model_config import KB_ROOT_PATH, JUPYTER_WORK_PATH, LLM_MODEL
from configs.server_config import SANDBOX_SERVER
from coagent.tools import toLangchainTools, TOOL_DICT, TOOL_SETS
from coagent.llm_models.llm_config import EmbedConfig, LLMConfig
from coagent.connector.phase import BasePhase
from coagent.connector.schema import Message
#
tools = toLangchainTools([TOOL_DICT[i] for i in TOOL_SETS if i in TOOL_DICT])
# log-levelprint prompt和llm predict
os.environ["log_verbose"] = "2"
phase_name = "baseGroupPhase"
llm_config = LLMConfig(
model_name=LLM_MODEL, api_key=os.environ["OPENAI_API_KEY"],
api_base_url=os.environ["API_BASE_URL"], temperature=0.3
)
embed_config = EmbedConfig(
embed_engine="model", embed_model="text2vec-base-chinese",
embed_model_path=os.path.join(src_dir, "embedding_models/text2vec-base-chinese")
)
phase = BasePhase(
phase_name, sandbox_server=SANDBOX_SERVER, jupyter_work_path=JUPYTER_WORK_PATH,
embed_config=embed_config, llm_config=llm_config, kb_root_path=KB_ROOT_PATH,
)
# round-1
query_content = "确认本地是否存在employee_data.csv并查看它有哪些列和数据类型;然后画柱状图"
# query_content = "帮我确认下127.0.0.1这个服务器的在10点是否存在异常请帮我判断一下"
query = Message(
role_name="human", role_type="user", tools=[],
role_content=query_content, input_query=query_content, origin_query=query_content,
)
# phase.pre_print(query)
output_message, output_memory = phase.step(query)
print(output_memory.to_str_messages(return_all=True, content_key="parsed_output_list"))