Merge pull request #33 from codefuse-ai/pr_webui

[feature](webui)<add config_webui for starting app>
This commit is contained in:
lightislost 2024-03-28 20:16:00 +08:00 committed by GitHub
commit eee0e09ee1
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
24 changed files with 428 additions and 235 deletions

2
.gitignore vendored
View File

@ -15,3 +15,5 @@ tests
*egg-info
build
dist
package.sh
local_config.json

View File

@ -123,60 +123,23 @@ cd codefuse-chatbot
pip install -r requirements.txt
```
2、基础配置
```bash
# 修改服务启动的基础配置
cd configs
cp model_config.py.example model_config.py
cp server_config.py.example server_config.py
# model_config#11~12 若需要使用openai接口openai接口key
os.environ["OPENAI_API_KEY"] = "sk-xxx"
# 可自行替换自己需要的api_base_url
os.environ["API_BASE_URL"] = "https://api.openai.com/v1"
# vi model_config#LLM_MODEL 你需要选择的语言模型
LLM_MODEL = "gpt-3.5-turbo"
LLM_MODELs = ["gpt-3.5-turbo"]
# vi model_config#EMBEDDING_MODEL 你需要选择的私有化向量模型
EMBEDDING_ENGINE = 'model'
EMBEDDING_MODEL = "text2vec-base"
# vi model_config#embedding_model_dict 修改成你的本地路径如果能直接连接huggingface则无需修改
# 若模型地址为:
model_dir: ~/codefuse-chatbot/embedding_models/shibing624/text2vec-base-chinese
# 配置如下
"text2vec-base": "shibing624/text2vec-base-chinese",
# vi server_config#8~14, 推荐采用容器启动服务
DOCKER_SERVICE = True
# 是否采用容器沙箱
SANDBOX_DO_REMOTE = True
# 是否采用api服务来进行
NO_REMOTE_API = True
```
3、启动服务
默认只启动webui相关服务未启动fastchat可选
```bash
# 若需要支撑codellama-34b-int4模型需要给fastchat打一个补丁
# cp examples/gptq.py ~/site-packages/fastchat/modules/gptq.py
# examples/llm_api.py#258 修改为 kwargs={"gptq_wbits": 4},
# start llm-service可选
python examples/llm_api.py
```
更多LLM接入方法见[更多细节...](sources/readme_docs/fastchat.md)
<br>
2、启动服务
```bash
# 完成server_config.py配置后可一键启动
cd examples
python start.py
bash start.sh
# 开始在页面进行配置即可
```
<div align=center>
<img src="sources/docs_imgs/webui_config.png" alt="图片">
</div>
或者通过`start.py`进行启动[老版启动方式](sources/readme_docs/start.md)
更多LLM接入方法见[更多细节...](sources/readme_docs/fastchat.md)
<br>
## 贡献指南
非常感谢您对 Codefuse 项目感兴趣,我们非常欢迎您对 Codefuse 项目的各种建议、意见(包括批评)、评论和贡献。

View File

@ -146,57 +146,23 @@ git lfs clone https://huggingface.co/THUDM/chatglm2-6b
git lfs clone https://huggingface.co/shibing624/text2vec-base-chinese
```
4. Basic Configuration
```bash
# Modify the basic configuration for service startup
cd configs
cp model_config.py.example model_config.py
cp server_config.py.example server_config.py
# model_config#11~12 If you need to use the openai interface, openai interface key
os.environ["OPENAI_API_KEY"] = "sk-xxx"
# You can replace the api_base_url yourself
os.environ["API_BASE_URL"] = "https://api.openai.com/v1"
# vi model_config#105 You need to choose the language model
LLM_MODEL = "gpt-3.5-turbo"
# vi model_config#43 You need to choose the vector model
EMBEDDING_MODEL = "text2vec-base"
# vi model_config#25 Modify to your local path, if you can directly connect to huggingface, no modification is needed
"text2vec-base": "shibing624/text2vec-base-chinese",
# vi server_config#8~14, it is recommended to start the service using containers.
DOCKER_SERVICE = True
# Whether to use container sandboxing is up to your specific requirements and preferences
SANDBOX_DO_REMOTE = True
# Whether to use api-service to use chatbot
NO_REMOTE_API = True
```
5. Start the Service
By default, only webui related services are started, and fastchat is not started (optional).
```bash
# if use codellama-34b-int4, you should replace fastchat's gptq.py
# cp examples/gptq.py ~/site-packages/fastchat/modules/gptq.py
# examples/llm_api.py#258 => kwargs={"gptq_wbits": 4},
# start llm-service可选
python examples/llm_api.py
```
More details about accessing LLM Moldes[More Details...](sources/readme_docs/fastchat.md)
<br>
4. Start the Service
```bash
# After configuring server_config.py, you can start with just one click.
cd examples
bash start_webui.sh
bash start.sh
# you can config your llm model and embedding model
```
<div align=center>
<img src="sources/docs_imgs/webui_config.png" alt="图片">
</div>
## 贡献指南
Or `python start.py` by [old version to start](sources/readme_docs/start-en.md)
More details about accessing LLM Moldes[More Details...](sources/readme_docs/fastchat.md)
<br>
## Contribution
Thank you for your interest in the Codefuse project. We warmly welcome any suggestions, opinions (including criticisms), comments, and contributions to the Codefuse project.
Your suggestions, opinions, and comments on Codefuse can be directly submitted through GitHub Issues.

View File

@ -1,5 +1,6 @@
import os
import platform
from loguru import logger
system_name = platform.system()
executable_path = os.getcwd()
@ -7,8 +8,8 @@ executable_path = os.getcwd()
# 日志存储路径
LOG_PATH = os.environ.get("LOG_PATH", None) or os.path.join(executable_path, "logs")
# 知识库默认存储路径
SOURCE_PATH = os.environ.get("SOURCE_PATH", None) or os.path.join(executable_path, "sources")
# # 知识库默认存储路径
# SOURCE_PATH = os.environ.get("SOURCE_PATH", None) or os.path.join(executable_path, "sources")
# 知识库默认存储路径
KB_ROOT_PATH = os.environ.get("KB_ROOT_PATH", None) or os.path.join(executable_path, "knowledge_base")
@ -16,8 +17,8 @@ KB_ROOT_PATH = os.environ.get("KB_ROOT_PATH", None) or os.path.join(executable_p
# 代码库默认存储路径
CB_ROOT_PATH = os.environ.get("CB_ROOT_PATH", None) or os.path.join(executable_path, "code_base")
# nltk 模型存储路径
NLTK_DATA_PATH = os.environ.get("NLTK_DATA_PATH", None) or os.path.join(executable_path, "nltk_data")
# # nltk 模型存储路径
# NLTK_DATA_PATH = os.environ.get("NLTK_DATA_PATH", None) or os.path.join(executable_path, "nltk_data")
# 代码存储路径
JUPYTER_WORK_PATH = os.environ.get("JUPYTER_WORK_PATH", None) or os.path.join(executable_path, "jupyter_work")
@ -31,8 +32,8 @@ NEBULA_PATH = os.environ.get("NEBULA_PATH", None) or os.path.join(executable_pat
# CHROMA 存储路径
CHROMA_PERSISTENT_PATH = os.environ.get("CHROMA_PERSISTENT_PATH", None) or os.path.join(executable_path, "data/chroma_data")
for _path in [LOG_PATH, SOURCE_PATH, KB_ROOT_PATH, CB_ROOT_PATH, NLTK_DATA_PATH, JUPYTER_WORK_PATH, WEB_CRAWL_PATH, NEBULA_PATH, CHROMA_PERSISTENT_PATH]:
if not os.path.exists(_path):
for _path in [LOG_PATH, KB_ROOT_PATH, CB_ROOT_PATH, JUPYTER_WORK_PATH, WEB_CRAWL_PATH, NEBULA_PATH, CHROMA_PERSISTENT_PATH]:
if not os.path.exists(_path) and int(os.environ.get("do_create_dir", True)):
os.makedirs(_path, exist_ok=True)
# 数据库默认存储路径。

View File

@ -101,6 +101,7 @@ class CodeBaseHandler:
# get KG info
if self.nh:
time.sleep(10) # aviod nebula staus didn't complete
stat = self.nh.get_stat()
vertices_num, edges_num = stat['vertices'], stat['edges']
else:

View File

@ -310,7 +310,8 @@ class LocalMemoryManager(BaseMemoryManager):
#
save_to_json_file(memory_messages, file_path)
def load(self, load_dir: str = "./") -> Memory:
def load(self, load_dir: str = None) -> Memory:
load_dir = load_dir or self.kb_root_path
file_path = os.path.join(load_dir, f"{self.user_name}/{self.unique_name}/{self.memory_type}/converation.jsonl")
uuid_name = "_".join([self.user_name, self.unique_name, self.memory_type])
@ -398,6 +399,7 @@ class LocalMemoryManager(BaseMemoryManager):
def embedding_retrieval(self, text: str, top_k=1, score_threshold=1.0, user_name: str = "default", **kwargs) -> List[Message]:
if text is None: return []
vb_name = f"{user_name}/{self.unique_name}/{self.memory_type}"
# logger.debug(f"vb_name={vb_name}")
vb = KBServiceFactory.get_service(vb_name, "faiss", self.embed_config, self.kb_root_path)
docs = vb.search_docs(text, top_k=top_k, score_threshold=score_threshold)
return [Message(**doc.metadata) for doc, score in docs]
@ -405,11 +407,13 @@ class LocalMemoryManager(BaseMemoryManager):
def text_retrieval(self, text: str, user_name: str = "default", **kwargs) -> List[Message]:
if text is None: return []
uuid_name = "_".join([user_name, self.unique_name, self.memory_type])
# logger.debug(f"uuid_name={uuid_name}")
return self._text_retrieval_from_cache(self.recall_memory_dict[uuid_name].messages, text, score_threshold=0.3, topK=5, **kwargs)
def datetime_retrieval(self, datetime: str, text: str = None, n: int = 5, user_name: str = "default", **kwargs) -> List[Message]:
if datetime is None: return []
uuid_name = "_".join([user_name, self.unique_name, self.memory_type])
# logger.debug(f"uuid_name={uuid_name}")
return self._datetime_retrieval_from_cache(self.recall_memory_dict[uuid_name].messages, datetime, text, n, **kwargs)
def _text_retrieval_from_cache(self, messages: List[Message], text: str = None, score_threshold=0.3, topK=5, tag_topK=5, **kwargs) -> List[Message]:

View File

@ -7,7 +7,7 @@ from websocket import create_connection
from websockets.client import WebSocketClientProtocol, ClientConnection
from websockets.exceptions import ConnectionClosedError
# from configs.model_config import JUPYTER_WORK_PATH
from coagent.base_configs.env_config import JUPYTER_WORK_PATH
from .basebox import BaseBox, CodeBoxResponse, CodeBoxStatus
@ -21,7 +21,7 @@ class PyCodeBox(BaseBox):
remote_ip: str = "http://127.0.0.1",
remote_port: str = "5050",
token: str = "mytoken",
jupyter_work_path: str = "",
jupyter_work_path: str = JUPYTER_WORK_PATH,
do_code_exe: bool = False,
do_remote: bool = False,
do_check_net: bool = True,
@ -30,7 +30,6 @@ class PyCodeBox(BaseBox):
super().__init__(remote_url, remote_ip, remote_port, token, do_code_exe, do_remote)
self.enter_status = True
self.do_check_net = do_check_net
self.use_stop = use_stop
self.jupyter_work_path = jupyter_work_path
# asyncio.run(self.astart())
self.start()

View File

@ -70,7 +70,8 @@ def encode2md(data, md_format):
return md_dict
method_text_md = '''> {function_name}
method_text_md = '''
> {function_name}
| Column Name | Content |
|-----------------|-----------------|
@ -79,7 +80,8 @@ method_text_md = '''> {function_name}
| Return type | {ReturnType} |
'''
class_text_md = '''> {code_path}
class_text_md = '''
> {code_path}
Bases: {ClassBase}

View File

@ -22,11 +22,14 @@ JUPYTER_WORK_PATH = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath
WEB_CRAWL_PATH = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "knowledge_base")
# NEBULA_DATA存储路径
NEBULA_PATH = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "data/nebula_data")
# 语言模型存储路径
LOCAL_LLM_MODEL_DIR = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "llm_models")
# 向量模型存储路径
LOCAL_EM_MODEL_DIR = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "embedding_models")
# CHROMA 存储路径
CHROMA_PERSISTENT_PATH = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "data/chroma_data")
for _path in [LOG_PATH, SOURCE_PATH, KB_ROOT_PATH, CB_ROOT_PATH, NLTK_DATA_PATH, JUPYTER_WORK_PATH, WEB_CRAWL_PATH, NEBULA_PATH, CHROMA_PERSISTENT_PATH]:
for _path in [LOG_PATH, SOURCE_PATH, KB_ROOT_PATH, CB_ROOT_PATH, NLTK_DATA_PATH, JUPYTER_WORK_PATH, WEB_CRAWL_PATH, NEBULA_PATH, CHROMA_PERSISTENT_PATH, LOCAL_LLM_MODEL_DIR, LOCAL_EM_MODEL_DIR]:
if not os.path.exists(_path):
os.makedirs(_path, exist_ok=True)

View File

@ -4,6 +4,7 @@ import logging
import torch
import openai
import base64
import json
from .utils import is_running_in_docker
from .default_config import *
# 日志格式
@ -29,26 +30,35 @@ try:
client.visit_domain = os.environ.get("visit_domain")
client.visit_biz = os.environ.get("visit_biz")
client.visit_biz_line = os.environ.get("visit_biz_line")
except:
except Exception as e:
OPENAI_API_BASE = "https://api.openai.com/v1"
logger.error(e)
pass
try:
with open("./local_config.json", "r") as f:
update_config = json.load(f)
except:
update_config = {}
# add your openai key
OPENAI_API_BASE = "https://api.openai.com/v1"
os.environ["API_BASE_URL"] = OPENAI_API_BASE
os.environ["OPENAI_API_KEY"] = "sk-xx"
openai.api_key = "sk-xx"
os.environ["API_BASE_URL"] = os.environ.get("API_BASE_URL") or update_config.get("API_BASE_URL") or OPENAI_API_BASE
os.environ["OPENAI_API_KEY"] = os.environ.get("OPENAI_API_KEY") or update_config.get("OPENAI_API_KEY") or "sk-xx"
openai.api_key = os.environ["OPENAI_API_KEY"]
# os.environ["OPENAI_PROXY"] = "socks5h://127.0.0.1:13659"
os.environ["DUCKDUCKGO_PROXY"] = os.environ.get("DUCKDUCKGO_PROXY") or "socks5://127.0.0.1:13659"
os.environ["DUCKDUCKGO_PROXY"] = os.environ.get("DUCKDUCKGO_PROXY") or update_config.get("DUCKDUCKGO_PROXY") or "socks5h://127.0.0.1:13659"
# ignore if you dont's use baidu_ocr_api
os.environ["BAIDU_OCR_API_KEY"] = "xx"
os.environ["BAIDU_OCR_SECRET_KEY"] = "xx"
os.environ["log_verbose"] = "2"
# LLM 名称
EMBEDDING_ENGINE = 'model' # openai or model
EMBEDDING_MODEL = "text2vec-base"
LLM_MODEL = "gpt-3.5-turbo"
LLM_MODELs = ["gpt-3.5-turbo"]
EMBEDDING_ENGINE = os.environ.get("EMBEDDING_ENGINE") or update_config.get("EMBEDDING_ENGINE") or 'model' # openai or model
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL") or update_config.get("EMBEDDING_MODEL") or "text2vec-base"
LLM_MODEL = os.environ.get("LLM_MODEL") or "gpt-3.5-turbo"
LLM_MODELs = [LLM_MODEL]
USE_FASTCHAT = "gpt" not in LLM_MODEL # 判断是否进行fastchat
# LLM 运行设备
@ -57,10 +67,12 @@ LLM_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mp
# 在以下字典中修改属性值以指定本地embedding模型存储位置
# 如将 "text2vec": "GanymedeNil/text2vec-large-chinese" 修改为 "text2vec": "User/Downloads/text2vec-large-chinese"
# 此处请写绝对路径
embedding_model_dict = {
embedding_model_dict = json.loads(os.environ.get("embedding_model_dict")) if os.environ.get("embedding_model_dict") else {}
embedding_model_dict = embedding_model_dict or update_config.get("EMBEDDING_MODEL")
embedding_model_dict = embedding_model_dict or {
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
"ernie-base": "nghuyong/ernie-3.0-base-zh",
"text2vec-base": "shibing624/text2vec-base-chinese",
"text2vec-base": "text2vec-base-chinese",
"text2vec": "GanymedeNil/text2vec-large-chinese",
"text2vec-paraphrase": "shibing624/text2vec-base-chinese-paraphrase",
"text2vec-sentence": "shibing624/text2vec-base-chinese-sentence",
@ -74,31 +86,35 @@ embedding_model_dict = {
}
LOCAL_MODEL_DIR = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "embedding_models")
embedding_model_dict = {k: f"/home/user/chatbot/embedding_models/{v}" if is_running_in_docker() else f"{LOCAL_MODEL_DIR}/{v}" for k, v in embedding_model_dict.items()}
# LOCAL_MODEL_DIR = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "embedding_models")
# embedding_model_dict = {k: f"/home/user/chatbot/embedding_models/{v}" if is_running_in_docker() else f"{LOCAL_MODEL_DIR}/{v}" for k, v in embedding_model_dict.items()}
# Embedding 模型运行设备
EMBEDDING_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
ONLINE_LLM_MODEL = {
ONLINE_LLM_MODEL = json.loads(os.environ.get("ONLINE_LLM_MODEL")) if os.environ.get("ONLINE_LLM_MODEL") else {}
ONLINE_LLM_MODEL = ONLINE_LLM_MODEL or update_config.get("ONLINE_LLM_MODEL")
ONLINE_LLM_MODEL = ONLINE_LLM_MODEL or {
# 线上模型。请在server_config中为每个在线API设置不同的端口
"openai-api": {
"model_name": "gpt-3.5-turbo",
"api_base_url": "https://api.openai.com/v1",
"api_base_url": OPENAI_API_BASE, # "https://api.openai.com/v1",
"api_key": "",
"openai_proxy": "",
},
"example": {
"version": "gpt-3.5", # 采用openai接口做示例
"api_base_url": "https://api.openai.com/v1",
"version": "gpt-3.5-turbo", # 采用openai接口做示例
"api_base_url": OPENAI_API_BASE, # "https://api.openai.com/v1",
"api_key": "",
"provider": "ExampleWorker",
},
}
# 建议使用chat模型不要使用base无法获取正确输出
llm_model_dict = {
llm_model_dict = json.loads(os.environ.get("llm_model_dict")) if os.environ.get("llm_model_dict") else {}
llm_model_dict = llm_model_dict or update_config.get("llm_model_dict")
llm_model_dict = llm_model_dict or {
"chatglm-6b": {
"local_model_path": "THUDM/chatglm-6b",
"api_base_url": "http://localhost:8888/v1", # "name"修改为fastchat服务中的"api_base_url"
@ -147,7 +163,9 @@ llm_model_dict = {
}
# 建议使用chat模型不要使用base无法获取正确输出
VLLM_MODEL_DICT = {
VLLM_MODEL_DICT = json.loads(os.environ.get("VLLM_MODEL_DICT")) if os.environ.get("VLLM_MODEL_DICT") else {}
VLLM_MODEL_DICT = VLLM_MODEL_DICT or update_config.get("VLLM_MODEL_DICT")
VLLM_MODEL_DICT = VLLM_MODEL_DICT or {
'chatglm2-6b': "THUDM/chatglm-6b",
}
# 以下模型经过测试可接入,配置仿照上述即可
@ -157,21 +175,21 @@ VLLM_MODEL_DICT = {
# 'chatglm3-6b-base', 'Qwen-72B-Chat-Int4'
LOCAL_LLM_MODEL_DIR = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "llm_models")
# 模型路径重置
llm_model_dict_c = {}
for k, v in llm_model_dict.items():
v_c = {}
for kk, vv in v.items():
if k=="local_model_path":
v_c[kk] = f"/home/user/chatbot/llm_models/{vv}" if is_running_in_docker() else f"{LOCAL_LLM_MODEL_DIR}/{vv}"
else:
v_c[kk] = vv
llm_model_dict_c[k] = v_c
# LOCAL_LLM_MODEL_DIR = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "llm_models")
# # 模型路径重置
# llm_model_dict_c = {}
# for k, v in llm_model_dict.items():
# v_c = {}
# for kk, vv in v.items():
# if k=="local_model_path":
# v_c[kk] = f"/home/user/chatbot/llm_models/{vv}" if is_running_in_docker() else f"{LOCAL_LLM_MODEL_DIR}/{vv}"
# else:
# v_c[kk] = vv
# llm_model_dict_c[k] = v_c
llm_model_dict = llm_model_dict_c
#
VLLM_MODEL_DICT_c = {}
for k, v in VLLM_MODEL_DICT.items():
VLLM_MODEL_DICT_c[k] = f"/home/user/chatbot/llm_models/{v}" if is_running_in_docker() else f"{LOCAL_LLM_MODEL_DIR}/{v}"
VLLM_MODEL_DICT = VLLM_MODEL_DICT_c
# llm_model_dict = llm_model_dict_c
# #
# VLLM_MODEL_DICT_c = {}
# for k, v in VLLM_MODEL_DICT.items():
# VLLM_MODEL_DICT_c[k] = f"/home/user/chatbot/llm_models/{v}" if is_running_in_docker() else f"{LOCAL_LLM_MODEL_DIR}/{v}"
# VLLM_MODEL_DICT = VLLM_MODEL_DICT_c

View File

@ -1,12 +1,24 @@
from .model_config import LLM_MODEL, LLM_DEVICE
import os
import os, json
try:
with open("./local_config.json", "r") as f:
update_config = json.load(f)
except:
update_config = {}
# API 是否开启跨域默认为False如果需要开启请设置为True
# is open cross domain
OPEN_CROSS_DOMAIN = False
# 是否用容器来启动服务
try:
DOCKER_SERVICE = json.loads(os.environ["DOCKER_SERVICE"]) or update_config.get("DOCKER_SERVICE") or False
except:
DOCKER_SERVICE = True
# 是否采用容器沙箱
try:
SANDBOX_DO_REMOTE = json.loads(os.environ["SANDBOX_DO_REMOTE"]) or update_config.get("SANDBOX_DO_REMOTE") or False
except:
SANDBOX_DO_REMOTE = True
# 是否采用api服务来进行
NO_REMOTE_API = True
@ -61,7 +73,7 @@ NEBULA_GRAPH_SERVER = {
# sandbox api server
SANDBOX_CONTRAINER_NAME = "devopsgpt_sandbox"
SANDBOX_IMAGE_NAME = "devopsgpt:py39"
SANDBOX_HOST = os.environ.get("SANDBOX_HOST") or DEFAULT_BIND_HOST # "172.25.0.3"
SANDBOX_HOST = os.environ.get("SANDBOX_HOST") or update_config.get("SANDBOX_HOST") or DEFAULT_BIND_HOST # "172.25.0.3"
SANDBOX_SERVER = {
"host": f"http://{SANDBOX_HOST}",
"port": 5050,
@ -73,7 +85,10 @@ SANDBOX_SERVER = {
# fastchat model_worker server
# 这些模型必须是在model_config.llm_model_dict中正确配置的。
# 在启动startup.py时可用通过`--model-worker --model-name xxxx`指定模型不指定则为LLM_MODEL
FSCHAT_MODEL_WORKERS = {
# 建议使用chat模型不要使用base无法获取正确输出
FSCHAT_MODEL_WORKERS = json.loads(os.environ.get("FSCHAT_MODEL_WORKERS")) if os.environ.get("FSCHAT_MODEL_WORKERS") else {}
FSCHAT_MODEL_WORKERS = FSCHAT_MODEL_WORKERS or update_config.get("FSCHAT_MODEL_WORKERS")
FSCHAT_MODEL_WORKERS = FSCHAT_MODEL_WORKERS or {
"default": {
"host": DEFAULT_BIND_HOST,
"port": 20002,
@ -117,7 +132,9 @@ FSCHAT_MODEL_WORKERS = {
'chatglm3-6b-32k': {'host': DEFAULT_BIND_HOST, 'port': 20018},
'chatglm3-6b-base': {'host': DEFAULT_BIND_HOST, 'port': 20019},
'Qwen-72B-Chat-Int4': {'host': DEFAULT_BIND_HOST, 'port': 20020},
'gpt-3.5-turbo': {'host': DEFAULT_BIND_HOST, 'port': 20021}
'gpt-3.5-turbo': {'host': DEFAULT_BIND_HOST, 'port': 20021},
'example': {'host': DEFAULT_BIND_HOST, 'port': 20022},
'openai-api': {'host': DEFAULT_BIND_HOST, 'port': 20023}
}
# fastchat multi model worker server
FSCHAT_MULTI_MODEL_WORKERS = {

View File

@ -41,24 +41,16 @@ embed_config = EmbedConfig(
# delete codebase
codebase_name = 'client_local'
codebase_name = 'client_nebula'
code_path = '/Users/bingxu/Desktop/工作/大模型/chatbot/test_code_repo/client'
code_path = "D://chromeDownloads/devopschat-bot/client_v2/client"
use_nh = True
# cbh = CodeBaseHandler(codebase_name, code_path, crawl_type='dir', use_nh=use_nh, local_graph_path=CB_ROOT_PATH,
# llm_config=llm_config, embed_config=embed_config)
do_interpret = False
cbh = CodeBaseHandler(codebase_name, code_path, crawl_type='dir', use_nh=use_nh, local_graph_path=CB_ROOT_PATH,
llm_config=llm_config, embed_config=embed_config)
cbh.delete_codebase(codebase_name=codebase_name)
# initialize codebase
codebase_name = 'client_local'
code_path = '/Users/bingxu/Desktop/工作/大模型/chatbot/test_code_repo/client'
code_path = "D://chromeDownloads/devopschat-bot/client_v2/client"
code_path = "/home/user/client"
use_nh = True
do_interpret = True
cbh = CodeBaseHandler(codebase_name, code_path, crawl_type='dir', use_nh=use_nh, local_graph_path=CB_ROOT_PATH,
llm_config=llm_config, embed_config=embed_config)
cbh.import_code(do_interpret=do_interpret)
@ -78,25 +70,25 @@ phase = BasePhase(
## 需要启动容器中的nebula采用use_nh=True来构建代码库是可以通过cypher来查询
# round-1
# query_content = "代码一共有多少类"
# query = Message(
# role_name="human", role_type="user",
# role_content=query_content, input_query=query_content, origin_query=query_content,
# code_engine_name="client_1", score_threshold=1.0, top_k=3, cb_search_type="cypher"
# )
#
# output_message1, _ = phase.step(query)
# print(output_message1)
query_content = "代码一共有多少类"
query = Message(
role_name="human", role_type="user",
role_content=query_content, input_query=query_content, origin_query=query_content,
code_engine_name="client_1", score_threshold=1.0, top_k=3, cb_search_type="cypher"
)
output_message1, _ = phase.step(query)
print(output_message1)
# round-2
# query_content = "代码库里有哪些函数返回5个就行"
# query = Message(
# role_name="human", role_type="user",
# role_content=query_content, input_query=query_content, origin_query=query_content,
# code_engine_name="client_1", score_threshold=1.0, top_k=3, cb_search_type="cypher"
# )
# output_message2, _ = phase.step(query)
# print(output_message2)
query_content = "代码库里有哪些函数返回5个就行"
query = Message(
role_name="human", role_type="user",
role_content=query_content, input_query=query_content, origin_query=query_content,
code_engine_name="client_1", score_threshold=1.0, top_k=3, cb_search_type="cypher"
)
output_message2, _ = phase.step(query)
print(output_message2)
# round-3

View File

@ -7,7 +7,6 @@ sys.path.append(src_dir)
from configs.model_config import KB_ROOT_PATH, JUPYTER_WORK_PATH
from configs.server_config import SANDBOX_SERVER
from coagent.tools import toLangchainTools, TOOL_DICT, TOOL_SETS
from coagent.llm_models.llm_config import EmbedConfig, LLMConfig
from coagent.connector.phase import BasePhase

View File

@ -16,3 +16,12 @@ from .baichuan import BaiChuanWorker
from .azure import AzureWorker
from .tiangong import TianGongWorker
from .openai import ExampleWorker
IMPORT_MODEL_WORKERS = [
ChatGLMWorker, MiniMaxWorker, XingHuoWorker, QianFanWorker, FangZhouWorker,
QwenWorker, BaiChuanWorker, AzureWorker, TianGongWorker, ExampleWorker
]
MODEL_WORKER_SETS = [tool.__name__ for tool in IMPORT_MODEL_WORKERS]

View File

@ -1,6 +1,5 @@
from fastchat.conversation import Conversation
from configs.model_config import LOG_PATH
# from coagent.base_configs.env_config import LOG_PATH
from configs.default_config import LOG_PATH
import fastchat.constants
fastchat.constants.LOGDIR = LOG_PATH
from fastchat.serve.base_model_worker import BaseModelWorker

View File

@ -1,4 +1,4 @@
import docker, sys, os, time, requests, psutil
import docker, sys, os, time, requests, psutil, json
import subprocess
from docker.types import Mount, DeviceRequest
from loguru import logger
@ -25,9 +25,6 @@ def check_process(content: str, lang: str = None, do_stop=False):
'''process-not-exist is true, process-exist is false'''
for process in psutil.process_iter(["pid", "name", "cmdline"]):
# check process name contains "jupyter" and port=xx
# if f"port={SANDBOX_SERVER['port']}" in str(process.info["cmdline"]).lower() and \
# "jupyter" in process.info['name'].lower():
if content in str(process.info["cmdline"]).lower():
logger.info(f"content, {process.info}")
# 关闭进程
@ -106,7 +103,7 @@ def start_sandbox_service(network_name ='my_network'):
)
mounts = [mount]
# 沙盒的启动与服务的启动是独立的
if SANDBOX_SERVER["do_remote"]:
if SANDBOX_DO_REMOTE:
client = docker.from_env()
networks = client.networks.list()
if any([network_name==i.attrs["Name"] for i in networks]):
@ -159,18 +156,6 @@ def start_api_service(sandbox_host=DEFAULT_BIND_HOST):
target='/home/user/chatbot/',
read_only=False # 如果需要只读访问将此选项设置为True
)
# mount_database = Mount(
# type='bind',
# source=os.path.join(src_dir, "knowledge_base"),
# target='/home/user/knowledge_base/',
# read_only=False # 如果需要只读访问将此选项设置为True
# )
# mount_code_database = Mount(
# type='bind',
# source=os.path.join(src_dir, "code_base"),
# target='/home/user/code_base/',
# read_only=False # 如果需要只读访问将此选项设置为True
# )
ports={
f"{API_SERVER['docker_port']}/tcp": f"{API_SERVER['port']}/tcp",
f"{WEBUI_SERVER['docker_port']}/tcp": f"{WEBUI_SERVER['port']}/tcp",
@ -208,6 +193,8 @@ def start_api_service(sandbox_host=DEFAULT_BIND_HOST):
if check_docker(client, CONTRAINER_NAME, do_stop=True):
container = start_docker(client, script_shs, ports, IMAGE_NAME, CONTRAINER_NAME, mounts, network=network_name)
logger.info("You can open http://localhost:8501 to use chatbot!")
else:
logger.info("start local service")
# 关闭之前启动的docker 服务
@ -234,12 +221,17 @@ def start_api_service(sandbox_host=DEFAULT_BIND_HOST):
subprocess.Popen(webui_sh, shell=True)
logger.info("You can please open http://localhost:8501 to use chatbot!")
if __name__ == "__main__":
def start_main():
global SANDBOX_DO_REMOTE, DOCKER_SERVICE
SANDBOX_DO_REMOTE = SANDBOX_DO_REMOTE if os.environ.get("SANDBOX_DO_REMOTE") is None else json.loads(os.environ.get("SANDBOX_DO_REMOTE"))
DOCKER_SERVICE = DOCKER_SERVICE if os.environ.get("DOCKER_SERVICE") is None else json.loads(os.environ.get("DOCKER_SERVICE"))
start_sandbox_service()
sandbox_host = DEFAULT_BIND_HOST
if SANDBOX_SERVER["do_remote"]:
if SANDBOX_DO_REMOTE:
client = docker.from_env()
containers = client.containers.list(all=True)
@ -252,3 +244,5 @@ if __name__ == "__main__":
start_api_service(sandbox_host)
if __name__ == "__main__":
start_main()

7
examples/start.sh Normal file
View File

@ -0,0 +1,7 @@
#!/bin/bash
cp ../configs/model_config.py.example ../configs/model_config.py
cp ../configs/server_config.py.example ../configs/server_config.py
streamlit run webui_config.py --server.port 8510

View File

@ -17,6 +17,8 @@ try:
except:
client = None
def stop_main():
#
check_docker(client, SANDBOX_CONTRAINER_NAME, do_stop=True, )
check_process(f"port={SANDBOX_SERVER['port']}", do_stop=True)
@ -28,3 +30,7 @@ check_process("api.py", do_stop=True)
check_process("sdfile_api.py", do_stop=True)
check_process("llm_api.py", do_stop=True)
check_process("webui.py", do_stop=True)
if __name__ == "__main__":
stop_main()

View File

@ -357,7 +357,7 @@ def knowledge_page(
empty.progress(0.0, "")
for d in api.recreate_vector_store(
kb, vs_type=default_vs_type, embed_model=embedding_model, embedding_device=EMBEDDING_DEVICE,
embed_model_path=embedding_model_dict[EMBEDDING_MODEL], embed_engine=EMBEDDING_ENGINE,
embed_model_path=embedding_model_dict[embedding_model], embed_engine=EMBEDDING_ENGINE,
api_key=llm_model_dict[LLM_MODEL]["api_key"],
api_base_url=llm_model_dict[LLM_MODEL]["api_base_url"],
):

208
examples/webui_config.py Normal file
View File

@ -0,0 +1,208 @@
import streamlit as st
import docker
import torch, os, sys, json
from loguru import logger
src_dir = os.path.join(
os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
)
sys.path.append(src_dir)
from configs.default_config import *
import platform
system_name = platform.system()
VERSION = "v0.1.0"
MODEL_WORKER_SETS = [
"ChatGLMWorker", "MiniMaxWorker", "XingHuoWorker", "QianFanWorker", "FangZhouWorker",
"QwenWorker", "BaiChuanWorker", "AzureWorker", "TianGongWorker", "ExampleWorker"
]
openai_models = ["gpt-3.5-turbo", "gpt-3.5-turbo-1106", "gpt-3.5-turbo-16k", "gpt-4"]
embedding_models = ["openai"]
st.write("启动配置页面!")
st.write("如果你要使用语言模型请将LLM放到 ~/Codefuse-chatbot/llm_models")
st.write("如果你要使用向量模型,请将向量模型放到 ~/Codefuse-chatbot/embedding_models")
with st.container():
col1, col2 = st.columns(2)
with col1.container():
llm_model_name = st.selectbox('LLM Model Name', openai_models + [i for i in os.listdir(LOCAL_LLM_MODEL_DIR) if os.path.isdir(os.path.join(LOCAL_LLM_MODEL_DIR, i))])
llm_apikey = st.text_input('填写 LLM API KEY', 'EMPTY')
llm_apiurl = st.text_input('填写 LLM API URL', 'http://localhost:8888/v1')
llm_engine = st.selectbox('选择哪个llm引擎', ["online", "fastchat", "fastchat-vllm"])
llm_model_port = st.text_input('LLM Model Port非fastchat模式可无视', '20006')
llm_provider_option = st.selectbox('选择哪个online模型加载器非online可无视', ["openai"] + MODEL_WORKER_SETS)
if llm_engine == "online" and llm_provider_option == "openai":
try:
from zdatafront import OPENAI_API_BASE
except:
OPENAI_API_BASE = "https://api.openai.com/v1"
llm_apiurl = OPENAI_API_BASE
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
FSCHAT_MODEL_WORKERS = {
llm_model_name: {
'host': "127.0.0.1", 'port': llm_model_port,
"device": device,
# todo: 多卡加载需要配置的参数
"gpus": None,
"numgpus": 1,},
}
ONLINE_LLM_MODEL, llm_model_dict, VLLM_MODEL_DICT = {}, {}, {}
if llm_engine == "online":
ONLINE_LLM_MODEL = {
llm_model_name: {
"model_name": llm_model_name,
"version": llm_model_name,
"api_base_url": llm_apiurl, # "https://api.openai.com/v1",
"api_key": llm_apikey,
"openai_proxy": "",
"provider": llm_provider_option
},
}
if llm_engine == "fastchat":
llm_model_dict = {
llm_model_name: {
"local_model_path": llm_model_name,
"api_base_url": llm_apiurl, # "name"修改为fastchat服务中的"api_base_url"
"api_key": llm_apikey
}}
if llm_engine == "fastchat-vllm":
VLLM_MODEL_DICT = {
llm_model_name: {
"local_model_path": llm_model_name,
"api_base_url": llm_apiurl, # "name"修改为fastchat服务中的"api_base_url"
"api_key": llm_apikey
}
}
llm_model_dict = {
llm_model_name: {
"local_model_path": llm_model_name,
"api_base_url": llm_apiurl, # "name"修改为fastchat服务中的"api_base_url"
"api_key": llm_apikey
}}
with col2.container():
em_model_name = st.selectbox('Embedding Model Name', [i for i in os.listdir(LOCAL_EM_MODEL_DIR) if os.path.isdir(os.path.join(LOCAL_EM_MODEL_DIR, i))] + embedding_models)
em_engine = st.selectbox('选择哪个embedding引擎', ["model", "openai"])
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
embedding_model_dict = {em_model_name: em_model_name}
# em_apikey = st.text_input('Embedding API KEY', '')
# em_apiurl = st.text_input('Embedding API URL', '')
#
try:
client = docker.from_env()
has_docker = True
except:
has_docker = False
if has_docker:
with st.container():
DOCKER_SERVICE = st.toggle('DOCKER_SERVICE', True)
SANDBOX_DO_REMOTE = st.toggle('SANDBOX_DO_REMOTE', True)
else:
DOCKER_SERVICE = False
SANDBOX_DO_REMOTE = False
with st.container():
cols = st.columns(3)
if cols[0].button(
"重启服务,按前配置生效",
use_container_width=True,
):
from start import start_main
from stop import stop_main
stop_main()
start_main()
if cols[1].button(
"停止服务",
use_container_width=True,
):
from stop import stop_main
stop_main()
if cols[2].button(
"启动对话服务",
use_container_width=True
):
os.environ["API_BASE_URL"] = llm_apiurl
os.environ["OPENAI_API_KEY"] = llm_apikey
os.environ["EMBEDDING_ENGINE"] = em_engine
os.environ["EMBEDDING_MODEL"] = em_model_name
os.environ["LLM_MODEL"] = llm_model_name
embedding_model_dict = {k: f"/home/user/chatbot/embedding_models/{v}" if DOCKER_SERVICE else f"{LOCAL_EM_MODEL_DIR}/{v}" for k, v in embedding_model_dict.items()}
os.environ["embedding_model_dict"] = json.dumps(embedding_model_dict)
os.environ["ONLINE_LLM_MODEL"] = json.dumps(ONLINE_LLM_MODEL)
# 模型路径重置
llm_model_dict_c = {}
for k, v in llm_model_dict.items():
v_c = {}
for kk, vv in v.items():
if k=="local_model_path":
v_c[kk] = f"/home/user/chatbot/llm_models/{vv}" if DOCKER_SERVICE else f"{LOCAL_LLM_MODEL_DIR}/{vv}"
else:
v_c[kk] = vv
llm_model_dict_c[k] = v_c
llm_model_dict = llm_model_dict_c
os.environ["llm_model_dict"] = json.dumps(llm_model_dict)
#
VLLM_MODEL_DICT_c = {}
for k, v in VLLM_MODEL_DICT.items():
VLLM_MODEL_DICT_c[k] = f"/home/user/chatbot/llm_models/{v}" if DOCKER_SERVICE else f"{LOCAL_LLM_MODEL_DIR}/{v}"
VLLM_MODEL_DICT = VLLM_MODEL_DICT_c
os.environ["VLLM_MODEL_DICT"] = json.dumps(VLLM_MODEL_DICT)
# server config
os.environ["DOCKER_SERVICE"] = json.dumps(DOCKER_SERVICE)
os.environ["SANDBOX_DO_REMOTE"] = json.dumps(SANDBOX_DO_REMOTE)
os.environ["FSCHAT_MODEL_WORKERS"] = json.dumps(FSCHAT_MODEL_WORKERS)
update_json = {
"API_BASE_URL": llm_apiurl,
"OPENAI_API_KEY": llm_apikey,
"EMBEDDING_ENGINE": em_engine,
"EMBEDDING_MODEL": em_model_name,
"LLM_MODEL": llm_model_name,
"embedding_model_dict": json.dumps(embedding_model_dict),
"llm_model_dict": json.dumps(llm_model_dict),
"ONLINE_LLM_MODEL": json.dumps(ONLINE_LLM_MODEL),
"VLLM_MODEL_DICT": json.dumps(VLLM_MODEL_DICT),
"DOCKER_SERVICE": json.dumps(DOCKER_SERVICE),
"SANDBOX_DO_REMOTE": json.dumps(SANDBOX_DO_REMOTE),
"FSCHAT_MODEL_WORKERS": json.dumps(FSCHAT_MODEL_WORKERS)
}
with open(os.path.join(src_dir, "configs/local_config.json"), "w") as f:
json.dump(update_json, f)
from start import start_main
from stop import stop_main
stop_main()
start_main()

Binary file not shown.

After

Width:  |  Height:  |  Size: 55 KiB

View File

@ -79,7 +79,7 @@ print(src_dir)
# chain的测试
llm_config = LLMConfig(
model_name="gpt-3.5-turbo", model_device="cpu",api_key=os.environ["OPENAI_API_KEY"],
model_name="gpt-3.5-turbo", api_key=os.environ["OPENAI_API_KEY"],
api_base_url=os.environ["API_BASE_URL"], temperature=0.3
)
embed_config = EmbedConfig(

View File

@ -5,7 +5,7 @@ src_dir = os.path.join(
)
sys.path.append(src_dir)
from configs import llm_model_dict, LLM_MODEL
from configs.model_config import llm_model_dict, LLM_MODEL
import openai
# os.environ["OPENAI_PROXY"] = "socks5h://127.0.0.1:7890"
# os.environ["OPENAI_PROXY"] = "http://127.0.0.1:7890"
@ -22,30 +22,32 @@ if __name__ == "__main__":
# chat = ChatOpenAI(temperature=0.1, model_name="gpt-3.5-turbo")
# print(chat.predict("hi!"))
# print(LLM_MODEL, llm_model_dict[LLM_MODEL]["api_key"], llm_model_dict[LLM_MODEL]["api_base_url"])
# model = ChatOpenAI(
# streaming=True,
# verbose=True,
# openai_api_key=llm_model_dict[LLM_MODEL]["api_key"],
# openai_api_base=llm_model_dict[LLM_MODEL]["api_base_url"],
# model_name=LLM_MODEL
# )
print(LLM_MODEL, llm_model_dict[LLM_MODEL]["api_key"], llm_model_dict[LLM_MODEL]["api_base_url"])
from langchain.chat_models import ChatOpenAI
model = ChatOpenAI(
streaming=True,
verbose=True,
openai_api_key="dsdadas",
openai_api_base=llm_model_dict[LLM_MODEL]["api_base_url"],
model_name=LLM_MODEL
)
print(model.predict("hi!"))
# chat_prompt = ChatPromptTemplate.from_messages([("human", "{input}")])
# chain = LLMChain(prompt=chat_prompt, llm=model)
# content = chain({"input": "hello"})
# print(content)
import openai
# openai.api_key = "EMPTY" # Not support yet
openai.api_base = "http://127.0.0.1:8888/v1"
# import openai
# # openai.api_key = "EMPTY" # Not support yet
# openai.api_base = "http://127.0.0.1:8888/v1"
model = "example"
# model = "example"
# create a chat completion
completion = openai.ChatCompletion.create(
model=model,
messages=[{"role": "user", "content": "Hello! What is your name? "}],
max_tokens=100,
)
# print the completion
print(completion.choices[0].message.content)
# # create a chat completion
# completion = openai.ChatCompletion.create(
# model=model,
# messages=[{"role": "user", "content": "Hello! What is your name? "}],
# max_tokens=100,
# )
# # print the completion
# print(completion.choices[0].message.content)

View File

@ -86,7 +86,8 @@ pycodebox = PyCodeBox(remote_url="http://localhost:5050",
reuslt = pycodebox.chat("```import os\nos.getcwd()```", do_code_exe=True)
print(reuslt)
reuslt = pycodebox.chat("print('hello world!')", do_code_exe=False)
# reuslt = pycodebox.chat("```print('hello world!')```", do_code_exe=True)
reuslt = pycodebox.chat("print('hello world!')", do_code_exe=True)
print(reuslt)