250 lines
8.2 KiB
Python
250 lines
8.2 KiB
Python
from fastchat.conversation import Conversation
|
||
from configs.default_config import LOG_PATH
|
||
import fastchat.constants
|
||
fastchat.constants.LOGDIR = LOG_PATH
|
||
from fastchat.serve.base_model_worker import BaseModelWorker
|
||
import uuid
|
||
import json
|
||
import sys
|
||
from pydantic import BaseModel, root_validator
|
||
import fastchat
|
||
import asyncio
|
||
from examples.utils import get_model_worker_config
|
||
|
||
|
||
from typing import Dict, List, Optional
|
||
|
||
|
||
__all__ = ["ApiModelWorker", "ApiChatParams", "ApiCompletionParams", "ApiEmbeddingsParams"]
|
||
|
||
|
||
class ApiConfigParams(BaseModel):
|
||
'''
|
||
在线API配置参数,未提供的值会自动从model_config.ONLINE_LLM_MODEL中读取
|
||
'''
|
||
api_base_url: Optional[str] = None
|
||
api_proxy: Optional[str] = None
|
||
api_key: Optional[str] = None
|
||
secret_key: Optional[str] = None
|
||
group_id: Optional[str] = None # for minimax
|
||
is_pro: bool = False # for minimax
|
||
|
||
APPID: Optional[str] = None # for xinghuo
|
||
APISecret: Optional[str] = None # for xinghuo
|
||
is_v2: bool = False # for xinghuo
|
||
|
||
worker_name: Optional[str] = None
|
||
|
||
class Config:
|
||
extra = "allow"
|
||
|
||
@root_validator(pre=True)
|
||
def validate_config(cls, v: Dict) -> Dict:
|
||
if config := get_model_worker_config(v.get("worker_name")):
|
||
for n in cls.__fields__:
|
||
if n in config:
|
||
v[n] = config[n]
|
||
return v
|
||
|
||
def load_config(self, worker_name: str):
|
||
self.worker_name = worker_name
|
||
if config := get_model_worker_config(worker_name):
|
||
for n in self.__fields__:
|
||
if n in config:
|
||
setattr(self, n, config[n])
|
||
return self
|
||
|
||
|
||
class ApiModelParams(ApiConfigParams):
|
||
'''
|
||
模型配置参数
|
||
'''
|
||
version: Optional[str] = None
|
||
version_url: Optional[str] = None
|
||
api_version: Optional[str] = None # for azure
|
||
deployment_name: Optional[str] = None # for azure
|
||
resource_name: Optional[str] = None # for azure
|
||
|
||
temperature: float = 0.7
|
||
max_tokens: Optional[int] = None
|
||
top_p: Optional[float] = 1.0
|
||
|
||
|
||
class ApiChatParams(ApiModelParams):
|
||
'''
|
||
chat请求参数
|
||
'''
|
||
messages: List[Dict[str, str]]
|
||
system_message: Optional[str] = None # for minimax
|
||
role_meta: Dict = {} # for minimax
|
||
|
||
|
||
class ApiCompletionParams(ApiModelParams):
|
||
prompt: str
|
||
|
||
|
||
class ApiEmbeddingsParams(ApiConfigParams):
|
||
texts: List[str]
|
||
embed_model: Optional[str] = None
|
||
to_query: bool = False # for minimax
|
||
|
||
|
||
class ApiModelWorker(BaseModelWorker):
|
||
DEFAULT_EMBED_MODEL: str = None # None means not support embedding
|
||
|
||
def __init__(
|
||
self,
|
||
model_names: List[str],
|
||
controller_addr: str = None,
|
||
worker_addr: str = None,
|
||
context_len: int = 2048,
|
||
no_register: bool = False,
|
||
**kwargs,
|
||
):
|
||
kwargs.setdefault("worker_id", uuid.uuid4().hex[:8])
|
||
kwargs.setdefault("model_path", "")
|
||
kwargs.setdefault("limit_worker_concurrency", 5)
|
||
super().__init__(model_names=model_names,
|
||
controller_addr=controller_addr,
|
||
worker_addr=worker_addr,
|
||
**kwargs)
|
||
import fastchat.serve.base_model_worker
|
||
import sys
|
||
self.logger = fastchat.serve.base_model_worker.logger
|
||
# 恢复被fastchat覆盖的标准输出
|
||
sys.stdout = sys.__stdout__
|
||
sys.stderr = sys.__stderr__
|
||
|
||
self.context_len = context_len
|
||
self.semaphore = asyncio.Semaphore(self.limit_worker_concurrency)
|
||
self.version = None
|
||
|
||
if not no_register and self.controller_addr:
|
||
self.init_heart_beat()
|
||
|
||
|
||
def count_token(self, params):
|
||
# TODO:需要完善
|
||
# print("count token")
|
||
prompt = params["prompt"]
|
||
return {"count": len(str(prompt)), "error_code": 0}
|
||
|
||
def generate_stream_gate(self, params: Dict):
|
||
self.call_ct += 1
|
||
|
||
try:
|
||
prompt = params["prompt"]
|
||
if self._is_chat(prompt):
|
||
messages = self.prompt_to_messages(prompt)
|
||
messages = self.validate_messages(messages)
|
||
else: # 使用chat模仿续写功能,不支持历史消息
|
||
messages = [{"role": self.user_role, "content": f"please continue writing from here: {prompt}"}]
|
||
|
||
p = ApiChatParams(
|
||
messages=messages,
|
||
temperature=params.get("temperature"),
|
||
top_p=params.get("top_p"),
|
||
max_tokens=params.get("max_new_tokens"),
|
||
version=self.version,
|
||
)
|
||
for resp in self.do_chat(p):
|
||
yield self._jsonify(resp)
|
||
except Exception as e:
|
||
yield self._jsonify({"error_code": 500, "text": f"{self.model_names[0]}请求API时发生错误:{e}"})
|
||
|
||
def generate_gate(self, params):
|
||
try:
|
||
for x in self.generate_stream_gate(params):
|
||
...
|
||
return json.loads(x[:-1].decode())
|
||
except Exception as e:
|
||
return {"error_code": 500, "text": str(e)}
|
||
|
||
|
||
# 需要用户自定义的方法
|
||
|
||
def do_chat(self, params: ApiChatParams) -> Dict:
|
||
'''
|
||
执行Chat的方法,默认使用模块里面的chat函数。
|
||
要求返回形式:{"error_code": int, "text": str}
|
||
'''
|
||
return {"error_code": 500, "text": f"{self.model_names[0]}未实现chat功能"}
|
||
|
||
# def do_completion(self, p: ApiCompletionParams) -> Dict:
|
||
# '''
|
||
# 执行Completion的方法,默认使用模块里面的completion函数。
|
||
# 要求返回形式:{"error_code": int, "text": str}
|
||
# '''
|
||
# return {"error_code": 500, "text": f"{self.model_names[0]}未实现completion功能"}
|
||
|
||
def do_embeddings(self, params: ApiEmbeddingsParams) -> Dict:
|
||
'''
|
||
执行Embeddings的方法,默认使用模块里面的embed_documents函数。
|
||
要求返回形式:{"code": int, "data": List[List[float]], "msg": str}
|
||
'''
|
||
return {"code": 500, "msg": f"{self.model_names[0]}未实现embeddings功能"}
|
||
|
||
def get_embeddings(self, params):
|
||
# fastchat对LLM做Embeddings限制很大,似乎只能使用openai的。
|
||
# 在前端通过OpenAIEmbeddings发起的请求直接出错,无法请求过来。
|
||
print("get_embedding")
|
||
print(params)
|
||
|
||
def make_conv_template(self, conv_template: str = None, model_path: str = None) -> Conversation:
|
||
raise NotImplementedError
|
||
|
||
def validate_messages(self, messages: List[Dict]) -> List[Dict]:
|
||
'''
|
||
有些API对mesages有特殊格式,可以重写该函数替换默认的messages。
|
||
之所以跟prompt_to_messages分开,是因为他们应用场景不同、参数不同
|
||
'''
|
||
return messages
|
||
|
||
|
||
# help methods
|
||
@property
|
||
def user_role(self):
|
||
return self.conv.roles[0]
|
||
|
||
@property
|
||
def ai_role(self):
|
||
return self.conv.roles[1]
|
||
|
||
def _jsonify(self, data: Dict) -> str:
|
||
'''
|
||
将chat函数返回的结果按照fastchat openai-api-server的格式返回
|
||
'''
|
||
return json.dumps(data, ensure_ascii=False).encode() + b"\0"
|
||
|
||
def _is_chat(self, prompt: str) -> bool:
|
||
'''
|
||
检查prompt是否由chat messages拼接而来
|
||
TODO: 存在误判的可能,也许从fastchat直接传入原始messages是更好的做法
|
||
'''
|
||
key = f"{self.conv.sep}{self.user_role}:"
|
||
return key in prompt
|
||
|
||
def prompt_to_messages(self, prompt: str) -> List[Dict]:
|
||
'''
|
||
将prompt字符串拆分成messages.
|
||
'''
|
||
result = []
|
||
user_role = self.user_role
|
||
ai_role = self.ai_role
|
||
user_start = user_role + ":"
|
||
ai_start = ai_role + ":"
|
||
for msg in prompt.split(self.conv.sep)[1:-1]:
|
||
if msg.startswith(user_start):
|
||
if content := msg[len(user_start):].strip():
|
||
result.append({"role": user_role, "content": content})
|
||
elif msg.startswith(ai_start):
|
||
if content := msg[len(ai_start):].strip():
|
||
result.append({"role": ai_role, "content": content})
|
||
else:
|
||
raise RuntimeError(f"unknown role in msg: {msg}")
|
||
return result
|
||
|
||
@classmethod
|
||
def can_embedding(cls):
|
||
return cls.DEFAULT_EMBED_MODEL is not None
|