Merge pull request #16 from codefuse-ai/coagent_branch

rename dev_opsgpt to coagent, and add memory&prompt manager
This commit is contained in:
Haotian Zhu 2024-01-29 11:09:09 +08:00 committed by GitHub
commit b7fdf50da7
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
259 changed files with 9908 additions and 4402 deletions

4
.gitignore vendored
View File

@ -10,4 +10,8 @@ code_base
.DS_Store
.idea
data
.pyc
tests
*egg-info
build
dist

View File

@ -3,7 +3,6 @@ From python:3.9.18-bookworm
WORKDIR /home/user
COPY ./requirements.txt /home/user/docker_requirements.txt
COPY ./jupyter_start.sh /home/user/jupyter_start.sh
RUN apt-get update

201
LICENSE
View File

@ -1,201 +0,0 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@ -1,10 +1,8 @@
<p align="left">
<a>中文</a>&nbsp &nbsp<a href="README_en.md">English&nbsp </a>
</p>
# <p align="center">CodeFuse-ChatBot: Development by Private Knowledge Augmentation</p>
<p align="center">
<a href="README.md"><img src="https://img.shields.io/badge/文档-中文版-yellow.svg" alt="ZH doc"></a>
<a href="README_en.md"><img src="https://img.shields.io/badge/document-English-yellow.svg" alt="EN doc"></a>
<img src="https://img.shields.io/github/license/codefuse-ai/codefuse-chatbot" alt="License">
<a href="https://github.com/codefuse-ai/codefuse-chatbot/issues">
<img alt="Open Issues" src="https://img.shields.io/github/issues-raw/codefuse-ai/codefuse-chatbot" />
@ -38,7 +36,7 @@ DevOps-ChatBot是由蚂蚁CodeFuse团队开发的开源AI智能助手致力
💡 本项目旨在通过检索增强生成Retrieval Augmented GenerationRAG、工具学习Tool Learning和沙盒环境来构建软件开发全生命周期的AI智能助手涵盖设计、编码、测试、部署和运维等阶段。 逐渐从各处资料查询、独立分散平台操作的传统开发运维模式转变到大模型问答的智能化开发运维模式,改变人们的开发运维习惯。
本项目核心差异技术、功能点:
- **🧠 智能调度核心:** 构建了体系链路完善的调度核心,支持多模式一键配置,简化操作流程。 [使用说明](sources/readme_docs/multi-agent.md)
- **🧠 智能调度核心:** 构建了体系链路完善的调度核心,支持多模式一键配置,简化操作流程。 [使用说明](sources/readme_docs/coagent/coagent.md)
- **💻 代码整库分析:** 实现了仓库级的代码深入理解,以及项目文件级的代码编写与生成,提升了开发效率。
- **📄 文档分析增强:** 融合了文档知识库与知识图谱,通过检索和推理增强,为文档分析提供了更深层次的支持。
- **🔧 垂类专属知识:** 为DevOps领域定制的专属知识库支持垂类知识库的自助一键构建便捷实用。
@ -93,7 +91,13 @@ DevOps-ChatBot是由蚂蚁CodeFuse团队开发的开源AI智能助手致力
## 🚀 快速使用
### coagent-py
完整文档见:[coagent](sources/readme_docs/coagent/coagent.md)
```
pip install coagent
```
### 使用ChatBot
请自行安装 nvidia 驱动程序,本项目已在 Python 3.9.18CUDA 11.7 环境下Windows、X86 架构的 macOS 系统中完成测试。
Docker安装、私有化LLM接入及相关启动问题见[快速使用明细](sources/readme_docs/start.md)
@ -155,12 +159,12 @@ NO_REMOTE_API = True
```bash
# 若需要支撑codellama-34b-int4模型需要给fastchat打一个补丁
# cp examples/gptq.py ~/site-packages/fastchat/modules/gptq.py
# dev_opsgpt/service/llm_api.py#258 修改为 kwargs={"gptq_wbits": 4},
# examples/llm_api.py#258 修改为 kwargs={"gptq_wbits": 4},
# start llm-service可选
python dev_opsgpt/service/llm_api.py
python examples/llm_api.py
```
更多LLM接入方法见[详情...](sources/readme_docs/fastchat.md)
更多LLM接入方法见[更多细节...](sources/readme_docs/fastchat.md)
<br>
```bash
@ -168,6 +172,12 @@ python dev_opsgpt/service/llm_api.py
cd examples
python start.py
```
## 贡献指南
非常感谢您对 Codefuse 项目感兴趣,我们非常欢迎您对 Codefuse 项目的各种建议、意见(包括批评)、评论和贡献。
您对 Codefuse 的各种建议、意见、评论可以直接通过 GitHub 的 Issues 提出。
参与 Codefuse 项目并为其作出贡献的方法有很多:代码实现、测试编写、流程工具改进、文档完善等等。任何贡献我们都会非常欢迎,并将您加入贡献者列表。详见[Contribution Guide...](sources/readme_docs/contribution/contribute_guide.md)
## 🤗 致谢

View File

@ -1,10 +1,8 @@
<p align="left">
<a href="README.md">中文</a>&nbsp &nbsp<a>English&nbsp </a>
</p>
# <p align="center">Codefuse-ChatBot: Development by Private Knowledge Augmentation</p>
<p align="center">
<a href="README.md"><img src="https://img.shields.io/badge/文档-中文版-yellow.svg" alt="ZH doc"></a>
<a href="README_EN.md"><img src="https://img.shields.io/badge/document-英文版-yellow.svg" alt="EN doc"></a>
<img src="https://img.shields.io/github/license/codefuse-ai/codefuse-chatbot" alt="License">
<a href="https://github.com/codefuse-ai/codefuse-chatbot/issues">
<img alt="Open Issues" src="https://img.shields.io/github/issues-raw/codefuse-ai/codefuse-chatbot" />
@ -15,6 +13,7 @@ This project is an open-source AI intelligent assistant, specifically designed f
## 🔔 Updates
- [2023.12.26] Opening the capability to integrate with open-source private large models and large model interfaces based on FastChat
- [2023.12.01] Release of Multi-Agent and codebase retrieval functionalities.
- [2023.11.15] Addition of Q&A enhancement mode based on the local codebase.
- [2023.09.15] Launch of sandbox functionality for local/isolated environments, enabling knowledge retrieval from specified URLs using web crawlers.
@ -30,13 +29,13 @@ This project is an open-source AI intelligent assistant, specifically designed f
💡 The aim of this project is to construct an AI intelligent assistant for the entire lifecycle of software development, covering design, coding, testing, deployment, and operations, through Retrieval Augmented Generation (RAG), Tool Learning, and sandbox environments. It transitions gradually from the traditional development and operations mode of querying information from various sources and operating on standalone, disparate platforms to an intelligent development and operations mode based on large-model Q&A, changing people's development and operations habits.
- **🧠 Intelligent Scheduling Core:** Constructed a well-integrated scheduling core system that supports multi-mode one-click configuration, simplifying the operational process.
- **🧠 Intelligent Scheduling Core:** Constructed a well-integrated scheduling core system that supports multi-mode one-click configuration, simplifying the operational process. [coagent](sources/readme_docs/coagent/coagent-en.md)
- **💻 Comprehensive Code Repository Analysis:** Achieved in-depth understanding at the repository level and coding and generation at the project file level, enhancing development efficiency.
- **📄 Enhanced Document Analysis:** Integrated document knowledge bases with knowledge graphs, providing deeper support for document analysis through enhanced retrieval and reasoning.
- **🔧 Industry-Specific Knowledge:** Tailored a specialized knowledge base for the DevOps domain, supporting the self-service one-click construction of industry-specific knowledge bases for convenience and practicality.
- **🤖 Compatible Models for Specific Verticals:** Designed small models specifically for the DevOps field, ensuring compatibility with related DevOps platforms and promoting the integration of the technological ecosystem.
🌍 Relying on open-source LLM and Embedding models, this project can achieve offline private deployments based on open-source models. Additionally, this project also supports the use of the OpenAI API.
🌍 Relying on open-source LLM and Embedding models, this project can achieve offline private deployments based on open-source models. Additionally, this project also supports the use of the OpenAI API.[Access Demo](sources/readme_docs/fastchat-en.md)
👥 The core development team has been long-term focused on research in the AIOps + NLP domain. We initiated the CodefuseGPT project, hoping that everyone could contribute high-quality development and operations documents widely, jointly perfecting this solution to achieve the goal of "Making Development Seamless for Everyone."
@ -64,7 +63,7 @@ This project is an open-source AI intelligent assistant, specifically designed f
- 💬 **LLM:**Supports various open-source models and LLM interfaces.
- 🛠️ **API Management:** Enables rapid integration of open-source components and operational platforms.
For implementation details, see: [Technical Route Details](sources/readme_docs/roadmap.md)
For implementation details, see: [Technical Route Details](sources/readme_docs/roadmap-en.md)
## 🌐 Model Integration
@ -79,7 +78,13 @@ If you need to integrate a specific model, please inform us of your requirements
## 🚀 Quick Start
### coagent-py
More Detail see[coagent](sources/readme_docs/coagent/coagent-en.md)
```
pip install coagent
```
### ChatBot-UI
Please install the Nvidia driver yourself; this project has been tested on Python 3.9.18, CUDA 11.7, Windows, and X86 architecture macOS systems.
1. Preparation of Python environment
@ -172,11 +177,13 @@ By default, only webui related services are started, and fastchat is not started
```bash
# if use codellama-34b-int4, you should replace fastchat's gptq.py
# cp examples/gptq.py ~/site-packages/fastchat/modules/gptq.py
# dev_opsgpt/service/llm_api.py#258 => kwargs={"gptq_wbits": 4},
# examples/llm_api.py#258 => kwargs={"gptq_wbits": 4},
# start llm-service可选
python dev_opsgpt/service/llm_api.py
python examples/llm_api.py
```
More details about accessing LLM Moldes[More Details...](sources/readme_docs/fastchat.md)
<br>
```bash
# After configuring server_config.py, you can start with just one click.
@ -184,6 +191,13 @@ cd examples
bash start_webui.sh
```
## 贡献指南
Thank you for your interest in the Codefuse project. We warmly welcome any suggestions, opinions (including criticisms), comments, and contributions to the Codefuse project.
Your suggestions, opinions, and comments on Codefuse can be directly submitted through GitHub Issues.
There are many ways to participate in the Codefuse project and contribute to it: code implementation, test writing, process tool improvement, documentation enhancement, and more. We welcome any contributions and will add you to our list of contributors. See [contribution guide](sources/readme_docs/contribution/contribute_guide_en.md)
## 🤗 Acknowledgements
This project is based on [langchain-chatchat](https://github.com/chatchat-space/Langchain-Chatchat) and [codebox-api](https://github.com/shroominic/codebox-api). We deeply appreciate their contributions to open source!

View File

@ -0,0 +1,88 @@
import os
import platform
system_name = platform.system()
executable_path = os.getcwd()
# 日志存储路径
LOG_PATH = os.environ.get("LOG_PATH", None) or os.path.join(executable_path, "logs")
# 知识库默认存储路径
SOURCE_PATH = os.environ.get("SOURCE_PATH", None) or os.path.join(executable_path, "sources")
# 知识库默认存储路径
KB_ROOT_PATH = os.environ.get("KB_ROOT_PATH", None) or os.path.join(executable_path, "knowledge_base")
# 代码库默认存储路径
CB_ROOT_PATH = os.environ.get("CB_ROOT_PATH", None) or os.path.join(executable_path, "code_base")
# nltk 模型存储路径
NLTK_DATA_PATH = os.environ.get("NLTK_DATA_PATH", None) or os.path.join(executable_path, "nltk_data")
# 代码存储路径
JUPYTER_WORK_PATH = os.environ.get("JUPYTER_WORK_PATH", None) or os.path.join(executable_path, "jupyter_work")
# WEB_CRAWL存储路径
WEB_CRAWL_PATH = os.environ.get("WEB_CRAWL_PATH", None) or os.path.join(executable_path, "knowledge_base")
# NEBULA_DATA存储路径
NELUBA_PATH = os.environ.get("NELUBA_PATH", None) or os.path.join(executable_path, "data/neluba_data")
for _path in [LOG_PATH, SOURCE_PATH, KB_ROOT_PATH, NLTK_DATA_PATH, JUPYTER_WORK_PATH, WEB_CRAWL_PATH, NELUBA_PATH]:
if not os.path.exists(_path):
os.makedirs(_path, exist_ok=True)
# 数据库默认存储路径。
# 如果使用sqlite可以直接修改DB_ROOT_PATH如果使用其它数据库请直接修改SQLALCHEMY_DATABASE_URI。
DB_ROOT_PATH = os.path.join(KB_ROOT_PATH, "info.db")
SQLALCHEMY_DATABASE_URI = f"sqlite:///{DB_ROOT_PATH}"
kbs_config = {
"faiss": {
},}
# GENERAL SERVER CONFIG
DEFAULT_BIND_HOST = os.environ.get("DEFAULT_BIND_HOST", None) or "127.0.0.1"
# NEBULA SERVER CONFIG
NEBULA_HOST = DEFAULT_BIND_HOST
NEBULA_PORT = 9669
NEBULA_STORAGED_PORT = 9779
NEBULA_USER = 'root'
NEBULA_PASSWORD = ''
NEBULA_GRAPH_SERVER = {
"host": DEFAULT_BIND_HOST,
"port": NEBULA_PORT,
"docker_port": NEBULA_PORT
}
# CHROMA CONFIG
CHROMA_PERSISTENT_PATH = '/home/user/chatbot/data/chroma_data'
# 默认向量库类型。可选faiss, milvus, pg.
DEFAULT_VS_TYPE = os.environ.get("DEFAULT_VS_TYPE") or "faiss"
# 缓存向量库数量
CACHED_VS_NUM = os.environ.get("CACHED_VS_NUM") or 1
# 知识库中单段文本长度
CHUNK_SIZE = os.environ.get("CHUNK_SIZE") or 500
# 知识库中相邻文本重合长度
OVERLAP_SIZE = os.environ.get("OVERLAP_SIZE") or 50
# 知识库匹配向量数量
VECTOR_SEARCH_TOP_K = os.environ.get("VECTOR_SEARCH_TOP_K") or 5
# 知识库匹配相关度阈值取值范围在0-1之间SCORE越小相关度越高取到1相当于不筛选建议设置在0.5左右
# Mac 可能存在无法使用normalized_L2的问题因此调整SCORE_THRESHOLD至 0~1100
FAISS_NORMALIZE_L2 = True if system_name in ["Linux", "Windows"] else False
SCORE_THRESHOLD = 1 if system_name in ["Linux", "Windows"] else 1100
# 搜索引擎匹配结题数量
SEARCH_ENGINE_TOP_K = os.environ.get("SEARCH_ENGINE_TOP_K") or 5
# 代码引擎匹配结题数量
CODE_SEARCH_TOP_K = os.environ.get("CODE_SEARCH_TOP_K") or 1

View File

@ -5,30 +5,26 @@ from loguru import logger
import importlib
import copy
import json
import os
from pathlib import Path
from configs.model_config import (
llm_model_dict, LLM_MODEL, PROMPT_TEMPLATE,
VECTOR_SEARCH_TOP_K, SCORE_THRESHOLD)
# from configs.model_config import (
# llm_model_dict, LLM_MODEL, PROMPT_TEMPLATE,
# VECTOR_SEARCH_TOP_K, SCORE_THRESHOLD)
from dev_opsgpt.tools import (
from coagent.tools import (
toLangchainTools,
TOOL_DICT, TOOL_SETS
)
from dev_opsgpt.connector.phase import BasePhase
from dev_opsgpt.connector.agents import BaseAgent, ReactAgent
from dev_opsgpt.connector.chains import BaseChain
from dev_opsgpt.connector.schema import (
Message,
load_phase_configs, load_chain_configs, load_role_configs
)
from dev_opsgpt.connector.schema import Memory
from dev_opsgpt.utils.common_utils import file_normalize
from dev_opsgpt.chat.utils import History, wrap_done
from dev_opsgpt.connector.configs import PHASE_CONFIGS, AGETN_CONFIGS, CHAIN_CONFIGS
from coagent.connector.phase import BasePhase
from coagent.connector.schema import Message
from coagent.connector.schema import Memory
from coagent.chat.utils import History, wrap_done
from coagent.llm_models.llm_config import LLMConfig, EmbedConfig
from coagent.connector.configs import PHASE_CONFIGS, AGETN_CONFIGS, CHAIN_CONFIGS
PHASE_MODULE = importlib.import_module("dev_opsgpt.connector.phase")
PHASE_MODULE = importlib.import_module("coagent.connector.phase")
@ -56,8 +52,8 @@ class AgentChat:
doc_engine_name: str = Body(..., description="知识库名称", examples=["samples"]),
search_engine_name: str = Body(..., description="搜索引擎名称", examples=["duckduckgo"]),
code_engine_name: str = Body(..., description="代码引擎名称", examples=["samples"]),
top_k: int = Body(VECTOR_SEARCH_TOP_K, description="匹配向量数"),
score_threshold: float = Body(SCORE_THRESHOLD, description="知识库匹配相关度阈值取值范围在0-1之间SCORE越小相关度越高取到1相当于不筛选建议设置在0.5左右", ge=0, le=1),
top_k: int = Body(5, description="匹配向量数"),
score_threshold: float = Body(1, description="知识库匹配相关度阈值取值范围在0-1之间SCORE越小相关度越高取到1相当于不筛选建议设置在0.5左右", ge=0, le=1),
stream: bool = Body(False, description="流式输出"),
local_doc_url: bool = Body(False, description="知识文件返回本地路径(true)或URL(false)"),
choose_tools: List[str] = Body([], description="选择tool的集合"),
@ -71,12 +67,27 @@ class AgentChat:
history_node_list: List = Body([], description="代码历史相关节点"),
isDetailed: bool = Body(False, description="是否输出完整的agent相关内容"),
upload_file: Union[str, Path, bytes] = "",
kb_root_path: str = Body("", description="知识库存储路径"),
jupyter_work_path: str = Body("", description="sandbox执行环境"),
sandbox_server: str = Body({}, description="代码历史相关节点"),
api_key: str = Body(os.environ.get("OPENAI_API_KEY"), description=""),
api_base_url: str = Body(os.environ.get("API_BASE_URL"),),
embed_model: str = Body("", description="向量模型"),
embed_model_path: str = Body("", description="向量模型路径"),
model_device: str = Body("", description="模型加载设备"),
embed_engine: str = Body("", description="向量模型类型"),
model_name: str = Body("", description="llm模型名称"),
temperature: float = Body(0.2, description=""),
**kargs
) -> Message:
# update configs
phase_configs, chain_configs, agent_configs = self.update_configs(
custom_phase_configs, custom_chain_configs, custom_role_configs)
params = locals()
params.pop("self")
embed_config: EmbedConfig = EmbedConfig(**params)
llm_config: LLMConfig = LLMConfig(**params)
logger.info('phase_configs={}'.format(phase_configs))
logger.info('chain_configs={}'.format(chain_configs))
@ -86,7 +97,6 @@ class AgentChat:
# choose tools
tools = toLangchainTools([TOOL_DICT[i] for i in choose_tools if i in TOOL_DICT])
logger.debug(f"upload_file: {upload_file}")
if upload_file:
upload_file_name = upload_file if upload_file and isinstance(upload_file, str) else upload_file.name
@ -97,8 +107,8 @@ class AgentChat:
input_message = Message(
role_content=query,
role_type="human",
role_name="user",
role_type="user",
role_name="human",
input_query=query,
origin_query=query,
phase_name=phase_name,
@ -120,30 +130,25 @@ class AgentChat:
])
# start to execute
phase_class = getattr(PHASE_MODULE, phase_configs[input_message.phase_name]["phase_type"])
# TODO 需要把相关信息补充上去
phase = phase_class(input_message.phase_name,
task = input_message.task,
phase_config = phase_configs,
chain_config = chain_configs,
role_config = agent_configs,
do_summary=phase_configs[input_message.phase_name]["do_summary"],
do_code_retrieval=input_message.do_code_retrieval,
do_doc_retrieval=input_message.do_doc_retrieval,
do_search=input_message.do_search,
base_phase_config = phase_configs,
base_chain_config = chain_configs,
base_role_config = agent_configs,
phase_config = None,
kb_root_path = kb_root_path,
jupyter_work_path = jupyter_work_path,
sandbox_server = sandbox_server,
embed_config = embed_config,
llm_config = llm_config,
)
output_message, local_memory = phase.step(input_message, history)
# logger.debug(f"local_memory: {local_memory.to_str_messages(content_key='step_content')}")
# return {
# "answer": output_message.role_content,
# "db_docs": output_message.db_docs,
# "search_docs": output_message.search_docs,
# "code_docs": output_message.code_docs,
# "figures": output_message.figures
# }
def chat_iterator(message: Message, local_memory: Memory, isDetailed=False):
step_content = local_memory.to_str_messages(content_key='step_content', filter_roles=["user"])
final_content = message.role_content
logger.debug(f"{step_content}")
result = {
"answer": "",
"db_docs": [str(doc) for doc in message.db_docs],
@ -190,8 +195,8 @@ class AgentChat:
search_engine_name: str = Body(..., description="搜索引擎名称", examples=["duckduckgo"]),
code_engine_name: str = Body(..., description="代码引擎名称", examples=["samples"]),
cb_search_type: str = Body(..., description="代码查询模式", examples=["tag"]),
top_k: int = Body(VECTOR_SEARCH_TOP_K, description="匹配向量数"),
score_threshold: float = Body(SCORE_THRESHOLD, description="知识库匹配相关度阈值取值范围在0-1之间SCORE越小相关度越高取到1相当于不筛选建议设置在0.5左右", ge=0, le=1),
top_k: int = Body(5, description="匹配向量数"),
score_threshold: float = Body(1, description="知识库匹配相关度阈值取值范围在0-1之间SCORE越小相关度越高取到1相当于不筛选建议设置在0.5左右", ge=0, le=1),
stream: bool = Body(False, description="流式输出"),
local_doc_url: bool = Body(False, description="知识文件返回本地路径(true)或URL(false)"),
choose_tools: List[str] = Body([], description="选择tool的集合"),
@ -205,15 +210,32 @@ class AgentChat:
history_node_list: List = Body([], description="代码历史相关节点"),
isDetailed: bool = Body(False, description="是否输出完整的agent相关内容"),
upload_file: Union[str, Path, bytes] = "",
kb_root_path: str = Body("", description="知识库存储路径"),
jupyter_work_path: str = Body("", description="sandbox执行环境"),
sandbox_server: str = Body({}, description="代码历史相关节点"),
api_key: str = Body(os.environ["OPENAI_API_KEY"], description=""),
api_base_url: str = Body(os.environ.get("API_BASE_URL"),),
embed_model: str = Body("", description="向量模型"),
embed_model_path: str = Body("", description="向量模型路径"),
model_device: str = Body("", description="模型加载设备"),
embed_engine: str = Body("", description="向量模型类型"),
model_name: str = Body("", description="llm模型名称"),
temperature: float = Body(0.2, description=""),
**kargs
) -> Message:
# update configs
phase_configs, chain_configs, agent_configs = self.update_configs(
custom_phase_configs, custom_chain_configs, custom_role_configs)
#
params = locals()
params.pop("self")
embed_config: EmbedConfig = EmbedConfig(**params)
llm_config: LLMConfig = LLMConfig(**params)
# choose tools
tools = toLangchainTools([TOOL_DICT[i] for i in choose_tools if i in TOOL_DICT])
logger.debug(f"upload_file: {upload_file}")
if upload_file:
upload_file_name = upload_file if upload_file and isinstance(upload_file, str) else upload_file.name
@ -224,8 +246,8 @@ class AgentChat:
input_message = Message(
role_content=query,
role_type="human",
role_name="user",
role_type="user",
role_name="human",
input_query=query,
origin_query=query,
phase_name=phase_name,
@ -252,21 +274,23 @@ class AgentChat:
phase_class = getattr(PHASE_MODULE, phase_configs[input_message.phase_name]["phase_type"])
phase = phase_class(input_message.phase_name,
task = input_message.task,
phase_config = phase_configs,
chain_config = chain_configs,
role_config = agent_configs,
do_summary=phase_configs[input_message.phase_name]["do_summary"],
do_code_retrieval=input_message.do_code_retrieval,
do_doc_retrieval=input_message.do_doc_retrieval,
do_search=input_message.do_search,
base_phase_config = phase_configs,
base_chain_config = chain_configs,
base_role_config = agent_configs,
phase_config = None,
kb_root_path = kb_root_path,
jupyter_work_path = jupyter_work_path,
sandbox_server = sandbox_server,
embed_config = embed_config,
llm_config = llm_config,
)
self.chatPhase_dict[phase_configs[input_message.phase_name]["phase_type"]] = phase
else:
phase = self.chatPhase_dict[phase_configs[input_message.phase_name]["phase_type"]]
def chat_iterator(message: Message, local_memory: Memory, isDetailed=False):
step_content = local_memory.to_str_messages(content_key='step_content', filter_roles=["user"])
step_content = "\n\n".join([f"{v}" for parsed_output in local_memory.get_parserd_output_list() for k, v in parsed_output.items() if k not in ["Action Status"]])
step_content = local_memory.to_str_messages(content_key='step_content', filter_roles=["human"])
step_content = "\n\n".join([f"{v}" for parsed_output in local_memory.get_parserd_output_list()[1:] for k, v in parsed_output.items() if k not in ["Action Status"]])
final_content = message.role_content
result = {
"answer": "",
@ -279,7 +303,6 @@ class AgentChat:
"final_content": final_content,
}
related_nodes, has_nodes = [], [ ]
for nodes in result["related_nodes"]:
for node in nodes:
@ -301,7 +324,7 @@ class AgentChat:
for output_message, local_memory in phase.astep(input_message, history):
# logger.debug(f"output_message: {output_message.role_content}")
# logger.debug(f"output_message: {output_message}")
# output_message = Message(**output_message)
# local_memory = Memory(**local_memory)
for result in chat_iterator(output_message, local_memory, isDetailed):

View File

@ -1,16 +1,17 @@
from fastapi import Body, Request
from fastapi.responses import StreamingResponse
import asyncio, json
import asyncio, json, os
from typing import List, AsyncIterable
from langchain import LLMChain
from langchain.callbacks import AsyncIteratorCallbackHandler
from langchain.prompts.chat import ChatPromptTemplate
from dev_opsgpt.llm_models import getChatModel
from dev_opsgpt.chat.utils import History, wrap_done
from configs.model_config import (llm_model_dict, LLM_MODEL, VECTOR_SEARCH_TOP_K, SCORE_THRESHOLD)
from dev_opsgpt.utils import BaseResponse
from coagent.llm_models import getChatModel, getChatModelFromConfig
from coagent.chat.utils import History, wrap_done
from coagent.llm_models.llm_config import LLMConfig, EmbedConfig
# from configs.model_config import (llm_model_dict, LLM_MODEL, VECTOR_SEARCH_TOP_K, SCORE_THRESHOLD)
from coagent.utils import BaseResponse
from loguru import logger
@ -37,22 +38,34 @@ class Chat:
examples=[[{"role": "user", "content": "我们来玩成语接龙,我先来,生龙活虎"}]]
),
engine_name: str = Body(..., description="知识库名称", examples=["samples"]),
top_k: int = Body(VECTOR_SEARCH_TOP_K, description="匹配向量数"),
score_threshold: float = Body(SCORE_THRESHOLD, description="知识库匹配相关度阈值取值范围在0-1之间SCORE越小相关度越高取到1相当于不筛选建议设置在0.5左右", ge=0, le=1),
top_k: int = Body(5, description="匹配向量数"),
score_threshold: float = Body(1, description="知识库匹配相关度阈值取值范围在0-1之间SCORE越小相关度越高取到1相当于不筛选建议设置在0.5左右", ge=0, le=1),
stream: bool = Body(False, description="流式输出"),
local_doc_url: bool = Body(False, description="知识文件返回本地路径(true)或URL(false)"),
request: Request = None,
api_key: str = Body(os.environ.get("OPENAI_API_KEY")),
api_base_url: str = Body(os.environ.get("API_BASE_URL")),
embed_model: str = Body("", ),
embed_model_path: str = Body("", ),
embed_engine: str = Body("", ),
model_name: str = Body("", ),
temperature: float = Body(0.5, ),
model_device: str = Body("", ),
**kargs
):
params = locals()
params.pop("self", None)
llm_config: LLMConfig = LLMConfig(**params)
embed_config: EmbedConfig = EmbedConfig(**params)
self.engine_name = engine_name if isinstance(engine_name, str) else engine_name.default
self.top_k = top_k if isinstance(top_k, int) else top_k.default
self.score_threshold = score_threshold if isinstance(score_threshold, float) else score_threshold.default
self.stream = stream if isinstance(stream, bool) else stream.default
self.local_doc_url = local_doc_url if isinstance(local_doc_url, bool) else local_doc_url.default
self.request = request
return self._chat(query, history, **kargs)
return self._chat(query, history, llm_config, embed_config, **kargs)
def _chat(self, query: str, history: List[History], **kargs):
def _chat(self, query: str, history: List[History], llm_config: LLMConfig, embed_config: EmbedConfig, **kargs):
history = [History(**h) if isinstance(h, dict) else h for h in history]
## check service dependcy is ok
@ -61,9 +74,10 @@ class Chat:
if service_status.code!=200: return service_status
def chat_iterator(query: str, history: List[History]):
model = getChatModel()
# model = getChatModel()
model = getChatModelFromConfig(llm_config)
result, content = self.create_task(query, history, model, **kargs)
result, content = self.create_task(query, history, model, llm_config, embed_config, **kargs)
logger.info('result={}'.format(result))
logger.info('content={}'.format(content))
@ -87,21 +101,34 @@ class Chat:
examples=[[{"role": "user", "content": "我们来玩成语接龙,我先来,生龙活虎"}]]
),
engine_name: str = Body(..., description="知识库名称", examples=["samples"]),
top_k: int = Body(VECTOR_SEARCH_TOP_K, description="匹配向量数"),
score_threshold: float = Body(SCORE_THRESHOLD, description="知识库匹配相关度阈值取值范围在0-1之间SCORE越小相关度越高取到1相当于不筛选建议设置在0.5左右", ge=0, le=1),
top_k: int = Body(5, description="匹配向量数"),
score_threshold: float = Body(1, description="知识库匹配相关度阈值取值范围在0-1之间SCORE越小相关度越高取到1相当于不筛选建议设置在0.5左右", ge=0, le=1),
stream: bool = Body(False, description="流式输出"),
local_doc_url: bool = Body(False, description="知识文件返回本地路径(true)或URL(false)"),
request: Request = None,
api_key: str = Body(os.environ.get("OPENAI_API_KEY")),
api_base_url: str = Body(os.environ.get("API_BASE_URL")),
embed_model: str = Body("", ),
embed_model_path: str = Body("", ),
embed_engine: str = Body("", ),
model_name: str = Body("", ),
temperature: float = Body(0.5, ),
model_device: str = Body("", ),
):
#
params = locals()
params.pop("self", None)
llm_config: LLMConfig = LLMConfig(**params)
embed_config: EmbedConfig = EmbedConfig(**params)
self.engine_name = engine_name if isinstance(engine_name, str) else engine_name.default
self.top_k = top_k if isinstance(top_k, int) else top_k.default
self.score_threshold = score_threshold if isinstance(score_threshold, float) else score_threshold.default
self.stream = stream if isinstance(stream, bool) else stream.default
self.local_doc_url = local_doc_url if isinstance(local_doc_url, bool) else local_doc_url.default
self.request = request
return self._achat(query, history)
return self._achat(query, history, llm_config, embed_config)
def _achat(self, query: str, history: List[History]):
def _achat(self, query: str, history: List[History], llm_config: LLMConfig, embed_config: EmbedConfig):
history = [History(**h) if isinstance(h, dict) else h for h in history]
## check service dependcy is ok
service_status = self.check_service_status()
@ -109,9 +136,10 @@ class Chat:
async def chat_iterator(query, history):
callback = AsyncIteratorCallbackHandler()
model = getChatModel()
# model = getChatModel()
model = getChatModelFromConfig(llm_config)
task, result = self.create_atask(query, history, model, callback)
task, result = self.create_atask(query, history, model, llm_config, embed_config, callback)
if self.stream:
for token in callback["text"]:
result["answer"] = token
@ -125,7 +153,7 @@ class Chat:
return StreamingResponse(chat_iterator(query, history),
media_type="text/event-stream")
def create_task(self, query: str, history: List[History], model, **kargs):
def create_task(self, query: str, history: List[History], model, llm_config: LLMConfig, embed_config: EmbedConfig, **kargs):
'''构建 llm 生成任务'''
chat_prompt = ChatPromptTemplate.from_messages(
[i.to_msg_tuple() for i in history] + [("human", "{input}")]
@ -134,7 +162,7 @@ class Chat:
content = chain({"input": query})
return {"answer": "", "docs": ""}, content
def create_atask(self, query, history, model, callback: AsyncIteratorCallbackHandler):
def create_atask(self, query, history, model, llm_config: LLMConfig, embed_config: EmbedConfig, callback: AsyncIteratorCallbackHandler):
chat_prompt = ChatPromptTemplate.from_messages(
[i.to_msg_tuple() for i in history] + [("human", "{input}")]
)

View File

@ -8,7 +8,6 @@
from fastapi import Request, Body
import os, asyncio
from urllib.parse import urlencode
from typing import List
from fastapi.responses import StreamingResponse
@ -16,16 +15,19 @@ from langchain import LLMChain
from langchain.callbacks import AsyncIteratorCallbackHandler
from langchain.prompts.chat import ChatPromptTemplate
from configs.model_config import (
llm_model_dict, LLM_MODEL, PROMPT_TEMPLATE,
VECTOR_SEARCH_TOP_K, SCORE_THRESHOLD, CODE_PROMPT_TEMPLATE)
from dev_opsgpt.chat.utils import History, wrap_done
from dev_opsgpt.utils import BaseResponse
# from configs.model_config import (
# llm_model_dict, LLM_MODEL, PROMPT_TEMPLATE,
# VECTOR_SEARCH_TOP_K, SCORE_THRESHOLD, CODE_PROMPT_TEMPLATE)
from coagent.connector.configs.prompts import CODE_PROMPT_TEMPLATE
from coagent.chat.utils import History, wrap_done
from coagent.utils import BaseResponse
from .base_chat import Chat
from dev_opsgpt.llm_models import getChatModel
from coagent.llm_models import getChatModel, getChatModelFromConfig
from dev_opsgpt.service.kb_api import search_docs, KBServiceFactory
from dev_opsgpt.service.cb_api import search_code, cb_exists_api
from coagent.llm_models.llm_config import LLMConfig, EmbedConfig
from coagent.service.cb_api import search_code, cb_exists_api
from loguru import logger
import json
@ -51,12 +53,21 @@ class CodeChat(Chat):
return BaseResponse(code=404, msg=f"未找到代码库 {self.engine_name}")
return BaseResponse(code=200, msg=f"找到代码库 {self.engine_name}")
def _process(self, query: str, history: List[History], model):
def _process(self, query: str, history: List[History], model, llm_config: LLMConfig, embed_config: EmbedConfig):
'''process'''
codes_res = search_code(query=query, cb_name=self.engine_name, code_limit=self.code_limit,
search_type=self.cb_search_type,
history_node_list=self.history_node_list)
history_node_list=self.history_node_list,
api_key=llm_config.api_key,
api_base_url=llm_config.api_base_url,
model_name=llm_config.model_name,
temperature=llm_config.temperature,
embed_model=embed_config.embed_model,
embed_model_path=embed_config.embed_model_path,
embed_engine=embed_config.embed_engine,
model_device=embed_config.model_device,
)
context = codes_res['context']
related_vertices = codes_res['related_vertices']
@ -94,17 +105,30 @@ class CodeChat(Chat):
stream: bool = Body(False, description="流式输出"),
local_doc_url: bool = Body(False, description="知识文件返回本地路径(true)或URL(false)"),
request: Request = None,
api_key: str = Body(os.environ.get("OPENAI_API_KEY")),
api_base_url: str = Body(os.environ.get("API_BASE_URL")),
embed_model: str = Body("", ),
embed_model_path: str = Body("", ),
embed_engine: str = Body("", ),
model_name: str = Body("", ),
temperature: float = Body(0.5, ),
model_device: str = Body("", ),
**kargs
):
params = locals()
params.pop("self")
llm_config: LLMConfig = LLMConfig(**params)
embed_config: EmbedConfig = EmbedConfig(**params)
self.engine_name = engine_name if isinstance(engine_name, str) else engine_name.default
self.code_limit = code_limit
self.stream = stream if isinstance(stream, bool) else stream.default
self.local_doc_url = local_doc_url if isinstance(local_doc_url, bool) else local_doc_url.default
self.request = request
self.cb_search_type = cb_search_type
return self._chat(query, history, **kargs)
return self._chat(query, history, llm_config, embed_config, **kargs)
def _chat(self, query: str, history: List[History], **kargs):
def _chat(self, query: str, history: List[History], llm_config: LLMConfig, embed_config: EmbedConfig, **kargs):
history = [History(**h) if isinstance(h, dict) else h for h in history]
service_status = self.check_service_status()
@ -112,9 +136,10 @@ class CodeChat(Chat):
if service_status.code != 200: return service_status
def chat_iterator(query: str, history: List[History]):
model = getChatModel()
# model = getChatModel()
model = getChatModelFromConfig(llm_config)
result, content = self.create_task(query, history, model, **kargs)
result, content = self.create_task(query, history, model, llm_config, embed_config, **kargs)
# logger.info('result={}'.format(result))
# logger.info('content={}'.format(content))
@ -130,9 +155,9 @@ class CodeChat(Chat):
return StreamingResponse(chat_iterator(query, history),
media_type="text/event-stream")
def create_task(self, query: str, history: List[History], model):
def create_task(self, query: str, history: List[History], model, llm_config: LLMConfig, embed_config: EmbedConfig):
'''构建 llm 生成任务'''
chain, context, result = self._process(query, history, model)
chain, context, result = self._process(query, history, model, llm_config, embed_config)
logger.info('chain={}'.format(chain))
try:
content = chain({"context": context, "question": query})
@ -140,8 +165,8 @@ class CodeChat(Chat):
content = {"text": str(e)}
return result, content
def create_atask(self, query, history, model, callback: AsyncIteratorCallbackHandler):
chain, context, result = self._process(query, history, model)
def create_atask(self, query, history, model, llm_config: LLMConfig, embed_config: EmbedConfig, callback: AsyncIteratorCallbackHandler):
chain, context, result = self._process(query, history, model, llm_config, embed_config)
task = asyncio.create_task(wrap_done(
chain.acall({"context": context, "question": query}), callback.done
))

View File

@ -8,13 +8,16 @@ from langchain.callbacks import AsyncIteratorCallbackHandler
from langchain.prompts.chat import ChatPromptTemplate
from configs.model_config import (
llm_model_dict, LLM_MODEL, PROMPT_TEMPLATE,
VECTOR_SEARCH_TOP_K, SCORE_THRESHOLD)
from dev_opsgpt.chat.utils import History, wrap_done
from dev_opsgpt.utils import BaseResponse
# from configs.model_config import (
# llm_model_dict, LLM_MODEL, PROMPT_TEMPLATE,
# VECTOR_SEARCH_TOP_K, SCORE_THRESHOLD)
from coagent.base_configs.env_config import KB_ROOT_PATH
from coagent.connector.configs.prompts import ORIGIN_TEMPLATE_PROMPT
from coagent.chat.utils import History, wrap_done
from coagent.utils import BaseResponse
from coagent.llm_models.llm_config import LLMConfig, EmbedConfig
from .base_chat import Chat
from dev_opsgpt.service.kb_api import search_docs, KBServiceFactory
from coagent.service.kb_api import search_docs, KBServiceFactory
from loguru import logger
@ -23,26 +26,33 @@ class KnowledgeChat(Chat):
def __init__(
self,
engine_name: str = "",
top_k: int = VECTOR_SEARCH_TOP_K,
top_k: int = 5,
stream: bool = False,
score_thresold: float = SCORE_THRESHOLD,
score_thresold: float = 1.0,
local_doc_url: bool = False,
request: Request = None,
kb_root_path: str = KB_ROOT_PATH,
) -> None:
super().__init__(engine_name, top_k, stream)
self.score_thresold = score_thresold
self.local_doc_url = local_doc_url
self.request = request
self.kb_root_path = kb_root_path
def check_service_status(self) -> BaseResponse:
kb = KBServiceFactory.get_service_by_name(self.engine_name)
kb = KBServiceFactory.get_service_by_name(self.engine_name, self.kb_root_path)
if kb is None:
return BaseResponse(code=404, msg=f"未找到知识库 {self.engine_name}")
return BaseResponse(code=200, msg=f"找到知识库 {self.engine_name}")
def _process(self, query: str, history: List[History], model):
def _process(self, query: str, history: List[History], model, llm_config: LLMConfig, embed_config: EmbedConfig, ):
'''process'''
docs = search_docs(query, self.engine_name, self.top_k, self.score_threshold)
docs = search_docs(
query, self.engine_name, self.top_k, self.score_threshold, self.kb_root_path,
api_key=embed_config.api_key, api_base_url=embed_config.api_base_url, embed_model=embed_config.embed_model,
embed_model_path=embed_config.embed_model_path, embed_engine=embed_config.embed_engine,
model_device=embed_config.model_device,
)
context = "\n".join([doc.page_content for doc in docs])
source_documents = []
for inum, doc in enumerate(docs):
@ -55,24 +65,24 @@ class KnowledgeChat(Chat):
text = f"""出处 [{inum + 1}] [{filename}]({url}) \n\n{doc.page_content}\n\n"""
source_documents.append(text)
chat_prompt = ChatPromptTemplate.from_messages(
[i.to_msg_tuple() for i in history] + [("human", PROMPT_TEMPLATE)]
[i.to_msg_tuple() for i in history] + [("human", ORIGIN_TEMPLATE_PROMPT)]
)
chain = LLMChain(prompt=chat_prompt, llm=model)
result = {"answer": "", "docs": source_documents}
return chain, context, result
def create_task(self, query: str, history: List[History], model):
def create_task(self, query: str, history: List[History], model, llm_config: LLMConfig, embed_config: EmbedConfig, ):
'''构建 llm 生成任务'''
logger.debug(f"query: {query}, history: {history}")
chain, context, result = self._process(query, history, model)
chain, context, result = self._process(query, history, model, llm_config, embed_config)
try:
content = chain({"context": context, "question": query})
except Exception as e:
content = {"text": str(e)}
return result, content
def create_atask(self, query, history, model, callback: AsyncIteratorCallbackHandler):
chain, context, result = self._process(query, history, model)
def create_atask(self, query, history, model, llm_config: LLMConfig, embed_config: EmbedConfig, callback: AsyncIteratorCallbackHandler):
chain, context, result = self._process(query, history, model, llm_config, embed_config)
task = asyncio.create_task(wrap_done(
chain.acall({"context": context, "question": query}), callback.done
))

View File

@ -6,7 +6,8 @@ from langchain.callbacks import AsyncIteratorCallbackHandler
from langchain.prompts.chat import ChatPromptTemplate
from dev_opsgpt.chat.utils import History, wrap_done
from coagent.chat.utils import History, wrap_done
from coagent.llm_models.llm_config import LLMConfig, EmbedConfig
from .base_chat import Chat
from loguru import logger
@ -21,7 +22,7 @@ class LLMChat(Chat):
) -> None:
super().__init__(engine_name, top_k, stream)
def create_task(self, query: str, history: List[History], model):
def create_task(self, query: str, history: List[History], model, llm_config: LLMConfig, embed_config: EmbedConfig, **kargs):
'''构建 llm 生成任务'''
chat_prompt = ChatPromptTemplate.from_messages(
[i.to_msg_tuple() for i in history] + [("human", "{input}")]
@ -30,7 +31,7 @@ class LLMChat(Chat):
content = chain({"input": query})
return {"answer": "", "docs": ""}, content
def create_atask(self, query, history, model, callback: AsyncIteratorCallbackHandler):
def create_atask(self, query, history, model, llm_config: LLMConfig, embed_config: EmbedConfig, callback: AsyncIteratorCallbackHandler):
chat_prompt = ChatPromptTemplate.from_messages(
[i.to_msg_tuple() for i in history] + [("human", "{input}")]
)

View File

@ -1,4 +1,3 @@
from fastapi import Request
import os, asyncio
from typing import List, Optional, Dict
@ -8,11 +7,13 @@ from langchain.utilities import BingSearchAPIWrapper, DuckDuckGoSearchAPIWrapper
from langchain.prompts.chat import ChatPromptTemplate
from langchain.docstore.document import Document
from configs.model_config import (
PROMPT_TEMPLATE, SEARCH_ENGINE_TOP_K, BING_SUBSCRIPTION_KEY, BING_SEARCH_URL,
VECTOR_SEARCH_TOP_K, SCORE_THRESHOLD)
from dev_opsgpt.chat.utils import History, wrap_done
from dev_opsgpt.utils import BaseResponse
# from configs.model_config import (
# PROMPT_TEMPLATE, SEARCH_ENGINE_TOP_K, BING_SUBSCRIPTION_KEY, BING_SEARCH_URL,
# VECTOR_SEARCH_TOP_K, SCORE_THRESHOLD)
from coagent.connector.configs.prompts import ORIGIN_TEMPLATE_PROMPT
from coagent.chat.utils import History, wrap_done
from coagent.utils import BaseResponse
from coagent.llm_models.llm_config import LLMConfig, EmbedConfig
from .base_chat import Chat
from loguru import logger
@ -20,19 +21,19 @@ from loguru import logger
from duckduckgo_search import DDGS
def bing_search(text, result_len=SEARCH_ENGINE_TOP_K):
if not (BING_SEARCH_URL and BING_SUBSCRIPTION_KEY):
return [{"snippet": "please set BING_SUBSCRIPTION_KEY and BING_SEARCH_URL in os ENV",
"title": "env info is not found",
"link": "https://python.langchain.com/en/latest/modules/agents/tools/examples/bing_search.html"}]
search = BingSearchAPIWrapper(bing_subscription_key=BING_SUBSCRIPTION_KEY,
bing_search_url=BING_SEARCH_URL)
return search.results(text, result_len)
# def bing_search(text, result_len=5):
# if not (BING_SEARCH_URL and BING_SUBSCRIPTION_KEY):
# return [{"snippet": "please set BING_SUBSCRIPTION_KEY and BING_SEARCH_URL in os ENV",
# "title": "env info is not found",
# "link": "https://python.langchain.com/en/latest/modules/agents/tools/examples/bing_search.html"}]
# search = BingSearchAPIWrapper(bing_subscription_key=BING_SUBSCRIPTION_KEY,
# bing_search_url=BING_SEARCH_URL)
# return search.results(text, result_len)
def duckduckgo_search(
query: str,
result_len: int = SEARCH_ENGINE_TOP_K,
result_len: int = 5,
region: Optional[str] = "wt-wt",
safesearch: str = "moderate",
time: Optional[str] = "y",
@ -79,7 +80,7 @@ def duckduckgo_search(
SEARCH_ENGINES = {"duckduckgo": duckduckgo_search,
"bing": bing_search,
# "bing": bing_search,
}
@ -96,7 +97,7 @@ def search_result2docs(search_results):
def lookup_search_engine(
query: str,
search_engine_name: str,
top_k: int = SEARCH_ENGINE_TOP_K,
top_k: int = 5,
):
results = SEARCH_ENGINES[search_engine_name](query, result_len=top_k)
docs = search_result2docs(results)
@ -109,7 +110,7 @@ class SearchChat(Chat):
def __init__(
self,
engine_name: str = "",
top_k: int = VECTOR_SEARCH_TOP_K,
top_k: int = 5,
stream: bool = False,
) -> None:
super().__init__(engine_name, top_k, stream)
@ -130,19 +131,19 @@ class SearchChat(Chat):
]
chat_prompt = ChatPromptTemplate.from_messages(
[i.to_msg_tuple() for i in history] + [("human", PROMPT_TEMPLATE)]
[i.to_msg_tuple() for i in history] + [("human", ORIGIN_TEMPLATE_PROMPT)]
)
chain = LLMChain(prompt=chat_prompt, llm=model)
result = {"answer": "", "docs": source_documents}
return chain, context, result
def create_task(self, query: str, history: List[History], model):
def create_task(self, query: str, history: List[History], model, llm_config: LLMConfig, embed_config: EmbedConfig, ):
'''构建 llm 生成任务'''
chain, context, result = self._process(query, history, model)
content = chain({"context": context, "question": query})
return result, content
def create_atask(self, query, history, model, callback: AsyncIteratorCallbackHandler):
def create_atask(self, query, history, model, llm_config: LLMConfig, embed_config: EmbedConfig, callback: AsyncIteratorCallbackHandler):
chain, context, result = self._process(query, history, model)
task = asyncio.create_task(wrap_done(
chain.acall({"context": context, "question": query}), callback.done

View File

@ -8,17 +8,20 @@
import time
from loguru import logger
from dev_opsgpt.codechat.code_analyzer.code_static_analysis import CodeStaticAnalysis
from dev_opsgpt.codechat.code_analyzer.code_intepreter import CodeIntepreter
from dev_opsgpt.codechat.code_analyzer.code_preprocess import CodePreprocessor
from dev_opsgpt.codechat.code_analyzer.code_dedup import CodeDedup
from coagent.codechat.code_analyzer.code_static_analysis import CodeStaticAnalysis
from coagent.codechat.code_analyzer.code_intepreter import CodeIntepreter
from coagent.codechat.code_analyzer.code_preprocess import CodePreprocessor
from coagent.codechat.code_analyzer.code_dedup import CodeDedup
from coagent.llm_models.llm_config import LLMConfig
class CodeAnalyzer:
def __init__(self, language: str):
def __init__(self, language: str, llm_config: LLMConfig):
self.llm_config = llm_config
self.code_preprocessor = CodePreprocessor()
self.code_debup = CodeDedup()
self.code_interperter = CodeIntepreter()
self.code_interperter = CodeIntepreter(self.llm_config)
self.code_static_analyzer = CodeStaticAnalysis(language=language)
def analyze(self, code_dict: dict, do_interpret: bool = True):

View File

@ -10,14 +10,15 @@ from langchain.schema import (
HumanMessage,
)
from configs.model_config import CODE_INTERPERT_TEMPLATE
from dev_opsgpt.llm_models.openai_model import getChatModel
# from configs.model_config import CODE_INTERPERT_TEMPLATE
from coagent.connector.configs.prompts import CODE_INTERPERT_TEMPLATE
from coagent.llm_models.openai_model import getChatModel, getChatModelFromConfig
from coagent.llm_models.llm_config import LLMConfig
class CodeIntepreter:
def __init__(self):
pass
def __init__(self, llm_config: LLMConfig):
self.llm_config = llm_config
def get_intepretation(self, code_list):
'''
@ -25,7 +26,8 @@ class CodeIntepreter:
@param code_list:
@return:
'''
chat_model = getChatModel()
# chat_model = getChatModel()
chat_model = getChatModelFromConfig(self.llm_config)
res = {}
for code in code_list:
@ -42,7 +44,8 @@ class CodeIntepreter:
@param code_list:
@return:
'''
chat_model = getChatModel()
# chat_model = getChatModel()
chat_model = getChatModelFromConfig(self.llm_config)
res = {}
messages = []

View File

@ -5,7 +5,7 @@
@time: 2023/11/21 下午2:28
@desc:
'''
from dev_opsgpt.codechat.code_analyzer.language_static_analysis import *
from coagent.codechat.code_analyzer.language_static_analysis import *
class CodeStaticAnalysis:
def __init__(self, language):

View File

@ -62,7 +62,7 @@ class JavaStaticAnalysis:
for node in tree.types:
if type(node) in (javalang.tree.ClassDeclaration, javalang.tree.InterfaceDeclaration):
class_name = pac_name + '#' + node.name
class_name = tree.package.name + '.' + node.name
class_name_list.append(class_name)
for node_inner in node.body:
@ -108,6 +108,28 @@ class JavaStaticAnalysis:
return res_dict
if __name__ == '__main__':
java_code_dict = {
'test': '''package com.theokanning.openai;
import com.theokanning.openai.client.Utils;
public class UtilsTest {
public void testRemoveChar() {
String input = "hello";
char ch = 'l';
String expected = "heo";
String res = Utils.remove(input, ch);
System.out.println(res.equals(expected));
}
}
'''
}
jsa = JavaStaticAnalysis()
res = jsa.analyze(java_code_dict)
logger.info(res)

View File

@ -8,7 +8,7 @@
from loguru import logger
import zipfile
from dev_opsgpt.codechat.code_crawler.dir_crawler import DirCrawler
from coagent.codechat.code_crawler.dir_crawler import DirCrawler
class ZipCrawler:

View File

@ -9,13 +9,16 @@ import time
from loguru import logger
from collections import defaultdict
from dev_opsgpt.db_handler.graph_db_handler.nebula_handler import NebulaHandler
from dev_opsgpt.db_handler.vector_db_handler.chroma_handler import ChromaHandler
from coagent.db_handler.graph_db_handler.nebula_handler import NebulaHandler
from coagent.db_handler.vector_db_handler.chroma_handler import ChromaHandler
from dev_opsgpt.codechat.code_search.cypher_generator import CypherGenerator
from dev_opsgpt.codechat.code_search.tagger import Tagger
from dev_opsgpt.embeddings.get_embedding import get_embedding
from coagent.codechat.code_search.cypher_generator import CypherGenerator
from coagent.codechat.code_search.tagger import Tagger
from coagent.embeddings.get_embedding import get_embedding
from coagent.llm_models.llm_config import LLMConfig
# from configs.model_config import EMBEDDING_DEVICE, EMBEDDING_MODEL
# search_by_tag
VERTEX_SCORE = 10
HISTORY_VERTEX_SCORE = 5
@ -26,13 +29,14 @@ MAX_DISTANCE = 1000
class CodeSearch:
def __init__(self, nh: NebulaHandler, ch: ChromaHandler, limit: int = 3):
def __init__(self, llm_config: LLMConfig, nh: NebulaHandler, ch: ChromaHandler, limit: int = 3):
'''
init
@param nh: NebulaHandler
@param ch: ChromaHandler
@param limit: limit of result
'''
self.llm_config = llm_config
self.nh = nh
self.ch = ch
self.limit = limit
@ -50,7 +54,6 @@ class CodeSearch:
# get all verticex
vertex_list = self.nh.get_vertices().get('v', [])
vertex_vid_list = [i.as_node().get_id().as_string() for i in vertex_list]
logger.debug(vertex_vid_list)
# update score
vertex_score_dict = defaultdict(lambda: 0)
@ -77,8 +80,26 @@ class CodeSearch:
# get most prominent package tag
package_score_dict = defaultdict(lambda: 0)
for vertex, score in vertex_score_dict.items():
package = '#'.join(vertex.split('#')[0:2])
if '#' in vertex:
# get class name first
cypher = f'''MATCH (v1:class)-[e:contain]->(v2) WHERE id(v2) == '{vertex}' RETURN id(v1) as id;'''
cypher_res = self.nh.execute_cypher(cypher=cypher, format_res=True)
class_vertices = cypher_res.get('id', [])
if not class_vertices:
continue
vertex = class_vertices[0].as_string()
# get package name
cypher = f'''MATCH (v1:package)-[e:contain]->(v2) WHERE id(v2) == '{vertex}' RETURN id(v1) as id;'''
cypher_res = self.nh.execute_cypher(cypher=cypher, format_res=True)
pac_vertices = cypher_res.get('id', [])
if not pac_vertices:
continue
package = pac_vertices[0].as_string()
package_score_dict[package] += score
# get respective code
@ -87,7 +108,10 @@ class CodeSearch:
package_score_tuple.sort(key=lambda x: x[1], reverse=True)
ids = [i[0] for i in package_score_tuple]
logger.info(f'ids={ids}')
chroma_res = self.ch.get(ids=ids, include=['metadatas'])
# logger.info(chroma_res)
for vertex, score in package_score_tuple:
index = chroma_res['result']['ids'].index(vertex)
code_text = chroma_res['result']['metadatas'][index]['code_text']
@ -97,16 +121,17 @@ class CodeSearch:
)
if len(res) >= self.limit:
break
logger.info(f'retrival code={res}')
return res
def search_by_desciption(self, query: str, engine: str):
def search_by_desciption(self, query: str, engine: str, model_path: str = "text2vec-base-chinese", embedding_device: str = "cpu"):
'''
search by perform sim search
@param query:
@return:
'''
query = query.replace(',', '')
query_emb = get_embedding(engine=engine, text_list=[query])
query_emb = get_embedding(engine=engine, text_list=[query], model_path=model_path, embedding_device= embedding_device,)
query_emb = query_emb[query]
query_embeddings = [query_emb]
@ -133,7 +158,7 @@ class CodeSearch:
@param engine:
@return:
'''
cg = CypherGenerator()
cg = CypherGenerator(self.llm_config)
cypher = cg.get_cypher(query)
if not cypher:
@ -156,9 +181,12 @@ class CodeSearch:
if __name__ == '__main__':
from configs.server_config import NEBULA_HOST, NEBULA_PORT, NEBULA_USER, NEBULA_PASSWORD, NEBULA_STORAGED_PORT
from configs.server_config import CHROMA_PERSISTENT_PATH
# from configs.server_config import NEBULA_HOST, NEBULA_PORT, NEBULA_USER, NEBULA_PASSWORD, NEBULA_STORAGED_PORT
# from configs.server_config import CHROMA_PERSISTENT_PATH
from coagent.base_configs.env_config import (
NEBULA_HOST, NEBULA_PORT, NEBULA_USER, NEBULA_PASSWORD, NEBULA_STORAGED_PORT,
CHROMA_PERSISTENT_PATH
)
codebase_name = 'testing'
nh = NebulaHandler(host=NEBULA_HOST, port=NEBULA_PORT, username=NEBULA_USER,

View File

@ -0,0 +1,82 @@
# encoding: utf-8
'''
@author: 温进
@file: cypher_generator.py
@time: 2023/11/24 上午10:17
@desc:
'''
from langchain import PromptTemplate
from loguru import logger
from coagent.llm_models.openai_model import getChatModel, getChatModelFromConfig
from coagent.llm_models.llm_config import LLMConfig
from coagent.utils.postprocess import replace_lt_gt
from langchain.schema import (
HumanMessage,
)
from langchain.chains.graph_qa.prompts import NGQL_GENERATION_PROMPT, CYPHER_GENERATION_TEMPLATE
schema = '''
Node properties: [{'tag': 'package', 'properties': []}, {'tag': 'class', 'properties': []}, {'tag': 'method', 'properties': []}]
Edge properties: [{'edge': 'contain', 'properties': []}, {'edge': 'depend', 'properties': []}]
Relationships: ['(:package)-[:contain]->(:class)', '(:class)-[:contain]->(:method)', '(:package)-[:contain]->(:package)']
'''
class CypherGenerator:
def __init__(self, llm_config: LLMConfig):
self.model = getChatModelFromConfig(llm_config)
NEBULAGRAPH_EXTRA_INSTRUCTIONS = """
Instructions:
First, generate cypher then convert it to NebulaGraph Cypher dialect(rather than standard):
1. it requires explicit label specification only when referring to node properties: v.`Foo`.name
2. note explicit label specification is not needed for edge properties, so it's e.name instead of e.`Bar`.name
3. it uses double equals sign for comparison: `==` rather than `=`
4. only use id(Foo) to get the name of node or edge
```\n"""
NGQL_GENERATION_TEMPLATE = CYPHER_GENERATION_TEMPLATE.replace(
"Generate Cypher", "Generate NebulaGraph Cypher"
).replace("Instructions:", NEBULAGRAPH_EXTRA_INSTRUCTIONS)
self.NGQL_GENERATION_PROMPT = PromptTemplate(
input_variables=["schema", "question"], template=NGQL_GENERATION_TEMPLATE
)
def get_cypher(self, query: str):
'''
get cypher from query
@param query:
@return:
'''
content = self.NGQL_GENERATION_PROMPT.format(schema=schema, question=query)
logger.info(content)
ans = ''
message = [HumanMessage(content=content)]
chat_res = self.model.predict_messages(message)
ans = chat_res.content
ans = replace_lt_gt(ans)
ans = self.post_process(ans)
return ans
def post_process(self, cypher_res: str):
'''
判断是否为正确的 cypher
@param cypher_res:
@return:
'''
if '(' not in cypher_res or ')' not in cypher_res:
return ''
return cypher_res
if __name__ == '__main__':
query = '代码库里有哪些函数返回5个就可以'
cg = CypherGenerator()
ans = cg.get_cypher(query)
logger.debug(f'ans=\n{ans}')

View File

@ -20,4 +20,20 @@ class Tagger:
# simple extract english
tag_list = re.findall(r'[a-zA-Z\_\.]+', query)
tag_list = list(set(tag_list))
tag_list = self.filter_tag_list(tag_list)
return tag_list
def filter_tag_list(self, tag_list):
'''
filter out tag
@param tag_list:
@return:
'''
res = []
for tag in tag_list:
if tag in ['java', 'python']:
continue
res.append(tag)
return res

View File

@ -8,17 +8,20 @@
import time
from loguru import logger
from configs.server_config import NEBULA_HOST, NEBULA_PORT, NEBULA_USER, NEBULA_PASSWORD, NEBULA_STORAGED_PORT
from configs.server_config import CHROMA_PERSISTENT_PATH
from dev_opsgpt.db_handler.graph_db_handler.nebula_handler import NebulaHandler
from dev_opsgpt.db_handler.vector_db_handler.chroma_handler import ChromaHandler
from dev_opsgpt.embeddings.get_embedding import get_embedding
# from configs.server_config import NEBULA_HOST, NEBULA_PORT, NEBULA_USER, NEBULA_PASSWORD, NEBULA_STORAGED_PORT
# from configs.server_config import CHROMA_PERSISTENT_PATH
# from configs.model_config import EMBEDDING_DEVICE, EMBEDDING_MODEL
from coagent.db_handler.graph_db_handler.nebula_handler import NebulaHandler
from coagent.db_handler.vector_db_handler.chroma_handler import ChromaHandler
from coagent.embeddings.get_embedding import get_embedding
from coagent.llm_models.llm_config import EmbedConfig
class CodeImporter:
def __init__(self, codebase_name: str, engine: str, nh: NebulaHandler, ch: ChromaHandler):
def __init__(self, codebase_name: str, embed_config: EmbedConfig, nh: NebulaHandler, ch: ChromaHandler):
self.codebase_name = codebase_name
self.engine = engine
# self.engine = engine
self.embed_config: EmbedConfig= embed_config
self.nh = nh
self.ch = ch
@ -27,9 +30,36 @@ class CodeImporter:
import code to nebula and chroma
@return:
'''
static_analysis_res = self.filter_out_vertex(static_analysis_res, interpretation)
logger.info(f'static_analysis_res={static_analysis_res}')
self.analysis_res_to_graph(static_analysis_res)
self.interpretation_to_db(static_analysis_res, interpretation, do_interpret)
def filter_out_vertex(self, static_analysis_res, interpretation):
'''
filter out nonexist vertices
@param static_analysis_res:
@param interpretation:
@return:
'''
save_pac_name = set()
for i, j in static_analysis_res.items():
save_pac_name.add(j['pac_name'])
for class_name in j['class_name_list']:
save_pac_name.add(class_name)
save_pac_name.update(j['func_name_dict'].get(class_name, []))
for _, structure in static_analysis_res.items():
new_pac_name_list = []
for i in structure['import_pac_name_list']:
if i in save_pac_name:
new_pac_name_list.append(i)
structure['import_pac_name_list'] = new_pac_name_list
return static_analysis_res
def analysis_res_to_graph(self, static_analysis_res):
'''
transform static_analysis_res to tuple
@ -93,7 +123,7 @@ class CodeImporter:
return
def interpretation_to_db(self, static_analysis_res, interpretation, do_interpret):
def interpretation_to_db(self, static_analysis_res, interpretation, do_interpret, ):
'''
vectorize interpretation and save to db
@return:
@ -102,7 +132,7 @@ class CodeImporter:
if do_interpret:
logger.info('start get embedding for interpretion')
interp_list = list(interpretation.values())
emb = get_embedding(engine=self.engine, text_list=interp_list)
emb = get_embedding(engine=self.embed_config.embed_engine, text_list=interp_list, model_path=self.embed_config.embed_model_path, embedding_device= self.embed_config.model_device)
logger.info('get embedding done')
else:
emb = {i: [0] for i in list(interpretation.values())}
@ -113,6 +143,9 @@ class CodeImporter:
metadatas = []
for code_text, interp in interpretation.items():
if code_text not in static_analysis_res:
continue
pac_name = static_analysis_res[code_text]['pac_name']
if pac_name in ids:
continue

View File

@ -8,26 +8,41 @@
import time
from loguru import logger
from configs.server_config import NEBULA_HOST, NEBULA_PORT, NEBULA_USER, NEBULA_PASSWORD, NEBULA_STORAGED_PORT
from configs.server_config import CHROMA_PERSISTENT_PATH
# from configs.server_config import NEBULA_HOST, NEBULA_PORT, NEBULA_USER, NEBULA_PASSWORD, NEBULA_STORAGED_PORT
# from configs.server_config import CHROMA_PERSISTENT_PATH
# from configs.model_config import EMBEDDING_ENGINE
from configs.model_config import EMBEDDING_ENGINE
from coagent.base_configs.env_config import (
NEBULA_HOST, NEBULA_PORT, NEBULA_USER, NEBULA_PASSWORD, NEBULA_STORAGED_PORT,
CHROMA_PERSISTENT_PATH
)
from dev_opsgpt.db_handler.graph_db_handler.nebula_handler import NebulaHandler
from dev_opsgpt.db_handler.vector_db_handler.chroma_handler import ChromaHandler
from dev_opsgpt.codechat.code_crawler.zip_crawler import *
from dev_opsgpt.codechat.code_analyzer.code_analyzer import CodeAnalyzer
from dev_opsgpt.codechat.codebase_handler.code_importer import CodeImporter
from dev_opsgpt.codechat.code_search.code_search import CodeSearch
from coagent.db_handler.graph_db_handler.nebula_handler import NebulaHandler
from coagent.db_handler.vector_db_handler.chroma_handler import ChromaHandler
from coagent.codechat.code_crawler.zip_crawler import *
from coagent.codechat.code_analyzer.code_analyzer import CodeAnalyzer
from coagent.codechat.codebase_handler.code_importer import CodeImporter
from coagent.codechat.code_search.code_search import CodeSearch
from coagent.llm_models.llm_config import EmbedConfig, LLMConfig
class CodeBaseHandler:
def __init__(self, codebase_name: str, code_path: str = '',
language: str = 'java', crawl_type: str = 'ZIP'):
def __init__(
self,
codebase_name: str,
code_path: str = '',
language: str = 'java',
crawl_type: str = 'ZIP',
embed_config: EmbedConfig = EmbedConfig(),
llm_config: LLMConfig = LLMConfig()
):
self.codebase_name = codebase_name
self.code_path = code_path
self.language = language
self.crawl_type = crawl_type
self.embed_config = embed_config
self.llm_config = llm_config
self.nh = NebulaHandler(host=NEBULA_HOST, port=NEBULA_PORT, username=NEBULA_USER,
password=NEBULA_PASSWORD, space_name=codebase_name)
@ -42,7 +57,7 @@ class CodeBaseHandler:
@return:
'''
# init graph to init tag and edge
code_importer = CodeImporter(engine=EMBEDDING_ENGINE, codebase_name=self.codebase_name,
code_importer = CodeImporter(embed_config=self.embed_config, codebase_name=self.codebase_name,
nh=self.nh, ch=self.ch)
code_importer.init_graph()
time.sleep(5)
@ -56,7 +71,7 @@ class CodeBaseHandler:
# analyze code
logger.info('start analyze')
st1 = time.time()
code_analyzer = CodeAnalyzer(language=self.language)
code_analyzer = CodeAnalyzer(language=self.language, llm_config = self.llm_config)
static_analysis_res, interpretation = code_analyzer.analyze(code_dict, do_interpret=do_interpret)
logger.debug('analyze done, rt={}'.format(time.time() - st1))
@ -111,14 +126,15 @@ class CodeBaseHandler:
'''
assert search_type in ['cypher', 'tag', 'description']
code_search = CodeSearch(nh=self.nh, ch=self.ch, limit=limit)
code_search = CodeSearch(llm_config=self.llm_config, nh=self.nh, ch=self.ch, limit=limit)
if search_type == 'cypher':
search_res = code_search.search_by_cypher(query=query)
elif search_type == 'tag':
search_res = code_search.search_by_tag(query=query)
elif search_type == 'description':
search_res = code_search.search_by_desciption(query=query, engine=EMBEDDING_ENGINE)
search_res = code_search.search_by_desciption(
query=query, engine=self.embed_config.embed_engine, model_path=self.embed_config.embed_model_path, embedding_device=self.embed_config.model_device)
context, related_vertice = self.format_search_res(search_res, search_type)
return context, related_vertice

View File

@ -1,9 +1,8 @@
from .base_agent import BaseAgent
from .react_agent import ReactAgent
from .check_agent import CheckAgent
from .executor_agent import ExecutorAgent
from .selector_agent import SelectorAgent
__all__ = [
"BaseAgent", "ReactAgent", "CheckAgent", "ExecutorAgent", "SelectorAgent"
"BaseAgent", "ReactAgent", "ExecutorAgent", "SelectorAgent"
]

View File

@ -1,114 +1,219 @@
from pydantic import BaseModel
from typing import List, Union
import re
import importlib
import re, os
import copy
import json
import traceback
import uuid
from loguru import logger
from dev_opsgpt.connector.schema import (
Memory, Task, Env, Role, Message, ActionStatus, CodeDoc, Doc
from coagent.connector.schema import (
Memory, Task, Role, Message, PromptField, LogVerboseEnum
)
from configs.server_config import SANDBOX_SERVER
from dev_opsgpt.sandbox import PyCodeBox, CodeBoxResponse
from dev_opsgpt.tools import DDGSTool, DocRetrieval, CodeRetrieval
from dev_opsgpt.connector.configs.prompts import BASE_PROMPT_INPUT, QUERY_CONTEXT_DOC_PROMPT_INPUT, BEGIN_PROMPT_INPUT
from dev_opsgpt.connector.message_process import MessageUtils
from dev_opsgpt.connector.configs.agent_config import REACT_PROMPT_INPUT, QUERY_CONTEXT_PROMPT_INPUT, PLAN_PROMPT_INPUT
from dev_opsgpt.llm_models import getChatModel, getExtraModel
from dev_opsgpt.connector.utils import parse_section
from coagent.connector.memory_manager import BaseMemoryManager
from coagent.connector.configs.prompts import BEGIN_PROMPT_INPUT
from coagent.connector.message_process import MessageUtils
from coagent.llm_models import getChatModel, getExtraModel, LLMConfig, getChatModelFromConfig, EmbedConfig
from coagent.connector.prompt_manager import PromptManager
from coagent.connector.memory_manager import LocalMemoryManager
from coagent.connector.utils import parse_section
# from configs.model_config import JUPYTER_WORK_PATH
# from configs.server_config import SANDBOX_SERVER
class BaseAgent:
def __init__(
self,
role: Role,
prompt_config: [PromptField],
prompt_manager_type: str = "PromptManager",
task: Task = None,
memory: Memory = None,
chat_turn: int = 1,
do_search: bool = False,
do_doc_retrieval: bool = False,
do_tool_retrieval: bool = False,
temperature: float = 0.2,
stop: Union[List[str], str] = None,
do_filter: bool = True,
do_use_self_memory: bool = True,
focus_agents: List[str] = [],
focus_message_keys: List[str] = [],
# prompt_mamnger: PromptManager
#
llm_config: LLMConfig = None,
embed_config: EmbedConfig = None,
sandbox_server: dict = {},
jupyter_work_path: str = "",
kb_root_path: str = "",
log_verbose: str = "0"
):
self.task = task
self.role = role
self.message_utils = MessageUtils(role)
self.llm = self.create_llm_engine(temperature, stop)
self.sandbox_server = sandbox_server
self.jupyter_work_path = jupyter_work_path
self.kb_root_path = kb_root_path
self.message_utils = MessageUtils(role, sandbox_server, jupyter_work_path, embed_config, llm_config, kb_root_path, log_verbose)
self.memory = self.init_history(memory)
self.llm_config: LLMConfig = llm_config
self.embed_config: EmbedConfig = embed_config
self.llm = self.create_llm_engine(llm_config=self.llm_config)
self.chat_turn = chat_turn
self.do_search = do_search
self.do_doc_retrieval = do_doc_retrieval
self.do_tool_retrieval = do_tool_retrieval
#
self.focus_agents = focus_agents
self.focus_message_keys = focus_message_keys
self.do_filter = do_filter
self.do_use_self_memory = do_use_self_memory
# self.prompt_manager = None
#
prompt_manager_module = importlib.import_module("coagent.connector.prompt_manager")
prompt_manager = getattr(prompt_manager_module, prompt_manager_type)
self.prompt_manager: PromptManager = prompt_manager(role_prompt=role.role_prompt, prompt_config=prompt_config)
self.log_verbose = max(os.environ.get("log_verbose", "0"), log_verbose)
def run(self, query: Message, history: Memory = None, background: Memory = None, memory_pool: Memory=None) -> Message:
def step(self, query: Message, history: Memory = None, background: Memory = None, memory_manager: BaseMemoryManager=None) -> Message:
'''agent reponse from multi-message'''
message = None
for message in self.arun(query, history, background, memory_pool):
for message in self.astep(query, history, background, memory_manager):
pass
return message
def arun(self, query: Message, history: Memory = None, background: Memory = None, memory_pool: Memory=None) -> Message:
def astep(self, query: Message, history: Memory = None, background: Memory = None, memory_manager: BaseMemoryManager=None) -> Message:
'''agent reponse from multi-message'''
# insert query into memory
query_c = copy.deepcopy(query)
query_c = self.start_action_step(query_c)
self_memory = self.memory if self.do_use_self_memory else None
# create your llm prompt
prompt = self.create_prompt(query_c, self_memory, history, background, memory_pool=memory_pool)
# llm predict
# prompt = self.create_prompt(query_c, self.memory, history, background, memory_pool=memory_manager.current_memory)
if memory_manager is None:
memory_manager = LocalMemoryManager(
unique_name=self.role.role_name,
do_init=True,
kb_root_path = self.kb_root_path,
embed_config=self.embed_config,
llm_config=self.embed_config
)
memory_manager.append(query)
memory_pool = memory_manager.current_memory
else:
memory_pool = memory_manager.current_memory
logger.debug(f"memory_pool: {memory_pool}")
prompt = self.prompt_manager.generate_full_prompt(
previous_agent_message=query_c, agent_long_term_memory=self.memory, ui_history=history, chain_summary_messages=background, memory_pool=memory_pool)
content = self.llm.predict(prompt)
logger.debug(f"{self.role.role_name} prompt: {prompt}")
logger.debug(f"{self.role.role_name} content: {content}")
if LogVerboseEnum.ge(LogVerboseEnum.Log2Level, self.log_verbose):
logger.debug(f"{self.role.role_name} prompt: {prompt}")
if LogVerboseEnum.ge(LogVerboseEnum.Log1Level, self.log_verbose):
logger.info(f"{self.role.role_name} content: {content}")
output_message = Message(
role_name=self.role.role_name,
role_type="ai", #self.role.role_type,
role_type="assistant", #self.role.role_type,
role_content=content,
step_content=content,
input_query=query_c.input_query,
tools=query_c.tools,
parsed_output_list=[query.parsed_output],
# parsed_output_list=[query.parsed_output],
customed_kargs=query_c.customed_kargs
)
# common parse llm' content to message
output_message = self.message_utils.parser(output_message)
if self.do_filter:
output_message = self.message_utils.filter(output_message)
# action step
output_message, observation_message = self.message_utils.step_router(output_message, history, background, memory_pool=memory_pool)
output_message, observation_message = self.message_utils.step_router(output_message, history, background, memory_manager=memory_manager)
output_message.parsed_output_list.append(output_message.parsed_output)
if observation_message:
output_message.parsed_output_list.append(observation_message.parsed_output)
# update self_memory
self.append_history(query_c)
self.append_history(output_message)
# logger.info(f"{self.role.role_name} currenct question: {output_message.input_query}\nllm_step_run: {output_message.role_content}")
output_message.input_query = output_message.role_content
# output_message.parsed_output_list.append(output_message.parsed_output) # 与上述重复?
# end
output_message = self.message_utils.inherit_extrainfo(query, output_message)
output_message = self.end_action_step(output_message)
# update memory pool
memory_pool.append(output_message)
memory_manager.append(output_message)
yield output_message
def pre_print(self, query: Message, history: Memory = None, background: Memory = None, memory_manager: BaseMemoryManager=None):
prompt = self.prompt_manager.pre_print(
previous_agent_message=query, agent_long_term_memory=self.memory, ui_history=history, chain_summary_messages=background, memory_pool=memory_manager.current_memory)
title = f"<<<<{self.role.role_name}'s prompt>>>>"
print("#"*len(title) + f"\n{title}\n"+ "#"*len(title)+ f"\n\n{prompt}\n\n")
def init_history(self, memory: Memory = None) -> Memory:
return Memory(messages=[])
def update_history(self, message: Message):
self.memory.append(message)
def append_history(self, message: Message):
self.memory.append(message)
def clear_history(self, ):
self.memory.clear()
self.memory = self.init_history()
def create_llm_engine(self, llm_config: LLMConfig = None, temperature=0.2, stop=None):
if llm_config is None:
return getChatModel(temperature=temperature, stop=stop)
else:
return getChatModelFromConfig(llm_config=llm_config)
def registry_actions(self, actions):
'''registry llm's actions'''
self.action_list = actions
def start_action_step(self, message: Message) -> Message:
'''do action before agent predict '''
# action_json = self.start_action()
# message["customed_kargs"]["xx"] = action_json
return message
def end_action_step(self, message: Message) -> Message:
'''do action after agent predict '''
# action_json = self.end_action()
# message["customed_kargs"]["xx"] = action_json
return message
def token_usage(self, ):
'''calculate the usage of token'''
pass
def select_memory_by_key(self, memory: Memory) -> Memory:
return Memory(
messages=[self.select_message_by_key(message) for message in memory.messages
if self.select_message_by_key(message) is not None]
)
def select_memory_by_agent_key(self, memory: Memory) -> Memory:
return Memory(
messages=[self.select_message_by_agent_key(message) for message in memory.messages
if self.select_message_by_agent_key(message) is not None]
)
def select_message_by_agent_key(self, message: Message) -> Message:
# assume we focus all agents
if self.focus_agents == []:
return message
return None if message is None or message.role_name not in self.focus_agents else self.select_message_by_key(message)
def select_message_by_key(self, message: Message) -> Message:
# assume we focus all key contents
if message is None:
return message
if self.focus_message_keys == []:
return message
message_c = copy.deepcopy(message)
message_c.parsed_output = {k: v for k,v in message_c.parsed_output.items() if k in self.focus_message_keys}
message_c.parsed_output_list = [{k: v for k,v in parsed_output.items() if k in self.focus_message_keys} for parsed_output in message_c.parsed_output_list]
return message_c
def get_memory(self, content_key="role_content"):
return self.memory.to_tuple_messages(content_key="step_content")
def get_memory_str(self, content_key="role_content"):
return "\n".join([": ".join(i) for i in self.memory.to_tuple_messages(content_key="step_content")])
def create_prompt(
self, query: Message, memory: Memory =None, history: Memory = None, background: Memory = None, memory_pool: Memory=None, prompt_mamnger=None) -> str:
'''
@ -275,75 +380,3 @@ class BaseAgent:
selfmemory_message = re.sub("}", "}}", re.sub("{", "{{", selfmemory_message))
return "\n补充自身对话信息: " + selfmemory_message if selfmemory_message else None
def init_history(self, memory: Memory = None) -> Memory:
return Memory(messages=[])
def update_history(self, message: Message):
self.memory.append(message)
def append_history(self, message: Message):
self.memory.append(message)
def clear_history(self, ):
self.memory.clear()
self.memory = self.init_history()
def create_llm_engine(self, temperature=0.2, stop=None):
return getChatModel(temperature=temperature, stop=stop)
def registry_actions(self, actions):
'''registry llm's actions'''
self.action_list = actions
def start_action_step(self, message: Message) -> Message:
'''do action before agent predict '''
# action_json = self.start_action()
# message["customed_kargs"]["xx"] = action_json
return message
def end_action_step(self, message: Message) -> Message:
'''do action after agent predict '''
# action_json = self.end_action()
# message["customed_kargs"]["xx"] = action_json
return message
def token_usage(self, ):
'''calculate the usage of token'''
pass
def select_memory_by_key(self, memory: Memory) -> Memory:
return Memory(
messages=[self.select_message_by_key(message) for message in memory.messages
if self.select_message_by_key(message) is not None]
)
def select_memory_by_agent_key(self, memory: Memory) -> Memory:
return Memory(
messages=[self.select_message_by_agent_key(message) for message in memory.messages
if self.select_message_by_agent_key(message) is not None]
)
def select_message_by_agent_key(self, message: Message) -> Message:
# assume we focus all agents
if self.focus_agents == []:
return message
return None if message is None or message.role_name not in self.focus_agents else self.select_message_by_key(message)
def select_message_by_key(self, message: Message) -> Message:
# assume we focus all key contents
if message is None:
return message
if self.focus_message_keys == []:
return message
message_c = copy.deepcopy(message)
message_c.parsed_output = {k: v for k,v in message_c.parsed_output.items() if k in self.focus_message_keys}
message_c.parsed_output_list = [{k: v for k,v in parsed_output.items() if k in self.focus_message_keys} for parsed_output in message_c.parsed_output_list]
return message_c
def get_memory(self, content_key="role_content"):
return self.memory.to_tuple_messages(content_key="step_content")
def get_memory_str(self, content_key="role_content"):
return "\n".join([": ".join(i) for i in self.memory.to_tuple_messages(content_key="step_content")])

View File

@ -0,0 +1,152 @@
from typing import List, Union
import copy
from loguru import logger
from coagent.connector.schema import (
Memory, Task, Env, Role, Message, ActionStatus, PromptField, LogVerboseEnum
)
from coagent.connector.memory_manager import BaseMemoryManager
from coagent.connector.configs.prompts import BEGIN_PROMPT_INPUT
from coagent.llm_models import LLMConfig, EmbedConfig
from coagent.connector.memory_manager import LocalMemoryManager
from .base_agent import BaseAgent
class ExecutorAgent(BaseAgent):
def __init__(
self,
role: Role,
prompt_config: [PromptField],
prompt_manager_type: str= "PromptManager",
task: Task = None,
memory: Memory = None,
chat_turn: int = 1,
focus_agents: List[str] = [],
focus_message_keys: List[str] = [],
#
llm_config: LLMConfig = None,
embed_config: EmbedConfig = None,
sandbox_server: dict = {},
jupyter_work_path: str = "",
kb_root_path: str = "",
log_verbose: str = "0"
):
super().__init__(role, prompt_config, prompt_manager_type, task, memory, chat_turn,
focus_agents, focus_message_keys, llm_config, embed_config, sandbox_server,
jupyter_work_path, kb_root_path, log_verbose
)
self.do_all_task = True # run all tasks
def astep(self, query: Message, history: Memory = None, background: Memory = None, memory_manager: BaseMemoryManager=None) -> Message:
'''agent reponse from multi-message'''
# insert query into memory
task_executor_memory = Memory(messages=[])
# insert query
output_message = Message(
role_name=self.role.role_name,
role_type="assistant", #self.role.role_type,
role_content=query.input_query,
step_content="",
input_query=query.input_query,
tools=query.tools,
# parsed_output_list=[query.parsed_output],
customed_kargs=query.customed_kargs
)
if memory_manager is None:
memory_manager = LocalMemoryManager(
unique_name=self.role.role_name,
do_init=True,
kb_root_path = self.kb_root_path,
embed_config=self.embed_config,
llm_config=self.embed_config
)
memory_manager.append(query)
# self_memory = self.memory if self.do_use_self_memory else None
plan_step = int(query.parsed_output.get("PLAN_STEP", 0))
# 如果存在plan字段且plan字段为str的时候
if "PLAN" not in query.parsed_output or isinstance(query.parsed_output.get("PLAN", []), str) or plan_step >= len(query.parsed_output.get("PLAN", [])):
query_c = copy.deepcopy(query)
query_c = self.start_action_step(query_c)
query_c.parsed_output = {"CURRENT_STEP": query_c.input_query}
task_executor_memory.append(query_c)
for output_message, task_executor_memory in self._arun_step(output_message, query_c, self.memory, history, background, memory_manager, task_executor_memory):
pass
# task_executor_memory.append(query_c)
# content = "the execution step of the plan is exceed the planned scope."
# output_message.parsed_dict = {"Thought": content, "Action Status": "finished", "Action": content}
# task_executor_memory.append(output_message)
elif "PLAN" in query.parsed_output:
if self.do_all_task:
# run all tasks step by step
for task_content in query.parsed_output["PLAN"][plan_step:]:
# create your llm prompt
query_c = copy.deepcopy(query)
query_c.parsed_output = {"CURRENT_STEP": task_content}
task_executor_memory.append(query_c)
for output_message, task_executor_memory in self._arun_step(output_message, query_c, self.memory, history, background, memory_manager, task_executor_memory):
pass
yield output_message
else:
query_c = copy.deepcopy(query)
query_c = self.start_action_step(query_c)
task_content = query_c.parsed_output["PLAN"][plan_step]
query_c.parsed_output = {"CURRENT_STEP": task_content}
task_executor_memory.append(query_c)
for output_message, task_executor_memory in self._arun_step(output_message, query_c, self.memory, history, background, memory_manager, task_executor_memory):
pass
output_message.parsed_output.update({"CURRENT_STEP": plan_step})
# update self_memory
self.append_history(query)
self.append_history(output_message)
output_message.input_query = output_message.role_content
# end_action_step
output_message = self.end_action_step(output_message)
# update memory pool
memory_manager.append(output_message)
yield output_message
def _arun_step(self, output_message: Message, query: Message, self_memory: Memory,
history: Memory, background: Memory, memory_manager: BaseMemoryManager,
task_memory: Memory) -> Union[Message, Memory]:
'''execute the llm predict by created prompt'''
memory_pool = memory_manager.current_memory
prompt = self.prompt_manager.generate_full_prompt(
previous_agent_message=query, agent_long_term_memory=self_memory, ui_history=history, chain_summary_messages=background, memory_pool=memory_pool,
task_memory=task_memory)
content = self.llm.predict(prompt)
if LogVerboseEnum.ge(LogVerboseEnum.Log2Level, self.log_verbose):
logger.debug(f"{self.role.role_name} prompt: {prompt}")
if LogVerboseEnum.ge(LogVerboseEnum.Log1Level, self.log_verbose):
logger.info(f"{self.role.role_name} content: {content}")
output_message.role_content = content
output_message.step_content += "\n"+output_message.role_content
output_message = self.message_utils.parser(output_message)
# according the output to choose one action for code_content or tool_content
output_message, observation_message = self.message_utils.step_router(output_message)
# update parserd_output_list
output_message.parsed_output_list.append(output_message.parsed_output)
react_message = copy.deepcopy(output_message)
task_memory.append(react_message)
if observation_message:
task_memory.append(observation_message)
output_message.parsed_output_list.append(observation_message.parsed_output)
# logger.debug(f"{observation_message.role_name} content: {observation_message.role_content}")
yield output_message, task_memory
def pre_print(self, query: Message, history: Memory = None, background: Memory = None, memory_manager: BaseMemoryManager = None):
task_memory = Memory(messages=[])
prompt = self.prompt_manager.pre_print(
previous_agent_message=query, agent_long_term_memory=self.memory, ui_history=history, chain_summary_messages=background, react_memory=None,
memory_pool=memory_manager.current_memory, task_memory=task_memory)
title = f"<<<<{self.role.role_name}'s prompt>>>>"
print("#"*len(title) + f"\n{title}\n"+ "#"*len(title)+ f"\n\n{prompt}\n\n")

View File

@ -1,96 +1,117 @@
from pydantic import BaseModel
from typing import List, Union
import re
import json
import traceback
import copy
from loguru import logger
from langchain.prompts.chat import ChatPromptTemplate
from dev_opsgpt.connector.schema import (
Memory, Task, Env, Role, Message, ActionStatus
from coagent.connector.schema import (
Memory, Task, Env, Role, Message, ActionStatus, PromptField, LogVerboseEnum
)
from dev_opsgpt.llm_models import getChatModel
from dev_opsgpt.connector.configs.agent_config import REACT_PROMPT_INPUT
from coagent.connector.memory_manager import BaseMemoryManager
from coagent.connector.configs.agent_config import REACT_PROMPT_INPUT
from coagent.llm_models import LLMConfig, EmbedConfig
from .base_agent import BaseAgent
from coagent.connector.memory_manager import LocalMemoryManager
from coagent.connector.prompt_manager import PromptManager
class ReactAgent(BaseAgent):
def __init__(
self,
role: Role,
prompt_config: [PromptField],
prompt_manager_type: str = "PromptManager",
task: Task = None,
memory: Memory = None,
chat_turn: int = 1,
do_search: bool = False,
do_doc_retrieval: bool = False,
do_tool_retrieval: bool = False,
temperature: float = 0.2,
stop: Union[List[str], str] = None,
do_filter: bool = True,
do_use_self_memory: bool = True,
focus_agents: List[str] = [],
focus_message_keys: List[str] = [],
# prompt_mamnger: PromptManager
#
llm_config: LLMConfig = None,
embed_config: EmbedConfig = None,
sandbox_server: dict = {},
jupyter_work_path: str = "",
kb_root_path: str = "",
log_verbose: str = "0"
):
super().__init__(role, task, memory, chat_turn, do_search, do_doc_retrieval,
do_tool_retrieval, temperature, stop, do_filter,do_use_self_memory,
focus_agents, focus_message_keys
super().__init__(role, prompt_config, prompt_manager_type, task, memory, chat_turn,
focus_agents, focus_message_keys, llm_config, embed_config, sandbox_server,
jupyter_work_path, kb_root_path, log_verbose
)
def run(self, query: Message, history: Memory = None, background: Memory = None, memory_pool: Memory = None) -> Message:
def step(self, query: Message, history: Memory = None, background: Memory = None, memory_manager: BaseMemoryManager = None) -> Message:
'''agent reponse from multi-message'''
for message in self.arun(query, history, background, memory_pool):
for message in self.astep(query, history, background, memory_manager):
pass
return message
def arun(self, query: Message, history: Memory = None, background: Memory = None, memory_pool: Memory = None) -> Message:
def astep(self, query: Message, history: Memory = None, background: Memory = None, memory_manager: BaseMemoryManager = None) -> Message:
'''agent reponse from multi-message'''
step_nums = copy.deepcopy(self.chat_turn)
react_memory = Memory(messages=[])
# insert query
output_message = Message(
role_name=self.role.role_name,
role_type="ai", #self.role.role_type,
role_type="assistant", #self.role.role_type,
role_content=query.input_query,
step_content="",
input_query=query.input_query,
tools=query.tools,
parsed_output_list=[query.parsed_output],
# parsed_output_list=[query.parsed_output],
customed_kargs=query.customed_kargs
)
query_c = copy.deepcopy(query)
query_c = self.start_action_step(query_c)
if query.parsed_output:
query_c.parsed_output = {"Question": "\n".join([f"{v}" for k, v in query.parsed_output.items() if k not in ["Action Status"]])}
else:
query_c.parsed_output = {"Question": query.input_query}
react_memory.append(query_c)
self_memory = self.memory if self.do_use_self_memory else None
# if query.parsed_output:
# query_c.parsed_output = {"Question": "\n".join([f"{v}" for k, v in query.parsed_output.items() if k not in ["Action Status"]])}
# else:
# query_c.parsed_output = {"Question": query.input_query}
# react_memory.append(query_c)
# self_memory = self.memory if self.do_use_self_memory else None
idx = 0
# start to react
while step_nums > 0:
output_message.role_content = output_message.step_content
prompt = self.create_prompt(query, self_memory, history, background, react_memory, memory_pool)
# prompt = self.create_prompt(query, self.memory, history, background, react_memory, memory_manager.current_memory)
if memory_manager is None:
memory_manager = LocalMemoryManager(
unique_name=self.role.role_name,
do_init=True,
kb_root_path = self.kb_root_path,
embed_config=self.embed_config,
llm_config=self.embed_config
)
memory_manager.append(query)
memory_pool = memory_manager.current_memory
else:
memory_pool = memory_manager.current_memory
prompt = self.prompt_manager.generate_full_prompt(
previous_agent_message=query_c, agent_long_term_memory=self.memory, ui_history=history, chain_summary_messages=background, react_memory=react_memory,
memory_pool=memory_pool)
try:
content = self.llm.predict(prompt)
except Exception as e:
logger.warning(f"error prompt: {prompt}")
logger.error(f"error prompt: {prompt}")
raise Exception(traceback.format_exc())
output_message.role_content = "\n"+content
output_message.step_content += "\n"+output_message.role_content
yield output_message
# logger.debug(f"{self.role.role_name}, {idx} iteration prompt: {prompt}")
logger.info(f"{self.role.role_name}, {idx} iteration step_run: {output_message.role_content}")
if LogVerboseEnum.ge(LogVerboseEnum.Log2Level, self.log_verbose):
logger.debug(f"{self.role.role_name}, {idx} iteration prompt: {prompt}")
if LogVerboseEnum.ge(LogVerboseEnum.Log1Level, self.log_verbose):
logger.info(f"{self.role.role_name}, {idx} iteration step_run: {output_message.role_content}")
output_message = self.message_utils.parser(output_message)
# when get finished signal can stop early
if output_message.action_status == ActionStatus.FINISHED or output_message.action_status == ActionStatus.STOPED: break
if output_message.action_status == ActionStatus.FINISHED or output_message.action_status == ActionStatus.STOPPED:
output_message.parsed_output_list.append(output_message.parsed_output)
break
# according the output to choose one action for code_content or tool_content
output_message, observation_message = self.message_utils.step_router(output_message)
output_message.parsed_output_list.append(output_message.parsed_output)
@ -101,22 +122,46 @@ class ReactAgent(BaseAgent):
react_memory.append(observation_message)
output_message.parsed_output_list.append(observation_message.parsed_output)
# logger.debug(f"{observation_message.role_name} content: {observation_message.role_content}")
# logger.info(f"{self.role.role_name} currenct question: {output_message.input_query}\nllm_react_run: {output_message.role_content}")
idx += 1
step_nums -= 1
yield output_message
# react' self_memory saved at last
self.append_history(output_message)
# update memory pool
# memory_pool.append(output_message)
output_message.input_query = query.input_query
# end_action_step
# end_action_step, BUG:it may cause slack some information
output_message = self.end_action_step(output_message)
# update memory pool
memory_pool.append(output_message)
memory_manager.append(output_message)
yield output_message
def pre_print(self, query: Message, history: Memory = None, background: Memory = None, memory_manager: BaseMemoryManager=None):
react_memory = Memory(messages=[])
prompt = self.prompt_manager.pre_print(
previous_agent_message=query, agent_long_term_memory=self.memory, ui_history=history, chain_summary_messages=background, react_memory=react_memory,
memory_pool=memory_manager.current_memory)
title = f"<<<<{self.role.role_name}'s prompt>>>>"
print("#"*len(title) + f"\n{title}\n"+ "#"*len(title)+ f"\n\n{prompt}\n\n")
# def create_prompt(
# self, query: Message, memory: Memory =None, history: Memory = None, background: Memory = None, react_memory: Memory = None, memory_manager: BaseMemoryManager= None,
# prompt_mamnger=None) -> str:
# prompt_mamnger = PromptManager()
# prompt_mamnger.register_standard_fields()
# # input_keys = parse_section(self.role.role_prompt, 'Agent Profile')
# data_dict = {
# "agent_profile": extract_section(self.role.role_prompt, 'Agent Profile'),
# "tool_information": query.tools,
# "session_records": memory_manager,
# "reference_documents": query,
# "output_format": extract_section(self.role.role_prompt, 'Response Output Format'),
# "response": "\n".join(["\n".join([f"**{k}:**\n{v}" for k,v in _dict.items()]) for _dict in react_memory.get_parserd_output()]),
# }
# # logger.debug(memory_pool)
# return prompt_mamnger.generate_full_prompt(data_dict)
def create_prompt(
self, query: Message, memory: Memory =None, history: Memory = None, background: Memory = None, react_memory: Memory = None, memory_pool: Memory= None,
prompt_mamnger=None) -> str:

View File

@ -0,0 +1,190 @@
from typing import List, Union
import copy
import random
from loguru import logger
from coagent.connector.schema import (
Memory, Task, Role, Message, PromptField, LogVerboseEnum
)
from coagent.connector.memory_manager import BaseMemoryManager
from coagent.connector.configs.prompts import BEGIN_PROMPT_INPUT
from coagent.connector.memory_manager import LocalMemoryManager
from coagent.llm_models import LLMConfig, EmbedConfig
from .base_agent import BaseAgent
class SelectorAgent(BaseAgent):
def __init__(
self,
role: Role,
prompt_config: List[PromptField] = None,
prompt_manager_type: str = "PromptManager",
task: Task = None,
memory: Memory = None,
chat_turn: int = 1,
focus_agents: List[str] = [],
focus_message_keys: List[str] = [],
group_agents: List[BaseAgent] = [],
#
llm_config: LLMConfig = None,
embed_config: EmbedConfig = None,
sandbox_server: dict = {},
jupyter_work_path: str = "",
kb_root_path: str = "",
log_verbose: str = "0"
):
super().__init__(role, prompt_config, prompt_manager_type, task, memory, chat_turn,
focus_agents, focus_message_keys, llm_config, embed_config, sandbox_server,
jupyter_work_path, kb_root_path, log_verbose
)
self.group_agents = group_agents
def astep(self, query: Message, history: Memory = None, background: Memory = None, memory_manager: BaseMemoryManager=None) -> Message:
'''agent reponse from multi-message'''
# insert query into memory
query_c = copy.deepcopy(query)
query_c = self.start_action_step(query_c)
# create your llm prompt
if memory_manager is None:
memory_manager = LocalMemoryManager(
unique_name=self.role.role_name,
do_init=True,
kb_root_path = self.kb_root_path,
embed_config=self.embed_config,
llm_config=self.embed_config
)
memory_manager.append(query)
memory_pool = memory_manager.current_memory
else:
memory_pool = memory_manager.current_memory
prompt = self.prompt_manager.generate_full_prompt(
previous_agent_message=query_c, agent_long_term_memory=self.memory, ui_history=history, chain_summary_messages=background, react_memory=None,
memory_pool=memory_pool, agents=self.group_agents)
content = self.llm.predict(prompt)
if LogVerboseEnum.ge(LogVerboseEnum.Log2Level, self.log_verbose):
logger.debug(f"{self.role.role_name} prompt: {prompt}")
if LogVerboseEnum.ge(LogVerboseEnum.Log1Level, self.log_verbose):
logger.info(f"{self.role.role_name} content: {content}")
# select agent
select_message = Message(
role_name=self.role.role_name,
role_type="assistant", #self.role.role_type,
role_content=content,
step_content=content,
input_query=query_c.input_query,
tools=query_c.tools,
# parsed_output_list=[query_c.parsed_output]
customed_kargs=query.customed_kargs
)
# common parse llm' content to message
select_message = self.message_utils.parser(select_message)
select_message.parsed_output_list.append(select_message.parsed_output)
output_message = None
if select_message.parsed_output.get("Role", "") in [agent.role.role_name for agent in self.group_agents]:
for agent in self.group_agents:
if agent.role.role_name == select_message.parsed_output.get("Role", ""):
break
for output_message in agent.astep(query_c, history, background=background, memory_manager=memory_manager):
yield output_message or select_message
# update self_memory
self.append_history(query_c)
self.append_history(output_message)
output_message.input_query = output_message.role_content
# output_message.parsed_output_list.append(output_message.parsed_output)
#
output_message = self.end_action_step(output_message)
# update memory pool
memory_manager.append(output_message)
select_message.parsed_output = output_message.parsed_output
select_message.parsed_output_list.extend(output_message.parsed_output_list)
yield select_message
def pre_print(self, query: Message, history: Memory = None, background: Memory = None, memory_manager: BaseMemoryManager=None):
prompt = self.prompt_manager.pre_print(
previous_agent_message=query, agent_long_term_memory=self.memory, ui_history=history, chain_summary_messages=background, react_memory=None,
memory_pool=memory_manager.current_memory, agents=self.group_agents)
title = f"<<<<{self.role.role_name}'s prompt>>>>"
print("#"*len(title) + f"\n{title}\n"+ "#"*len(title)+ f"\n\n{prompt}\n\n")
for agent in self.group_agents:
agent.pre_print(query=query, history=history, background=background, memory_manager=memory_manager)
# def create_prompt(
# self, query: Message, memory: Memory =None, history: Memory = None, background: Memory = None, memory_manager: BaseMemoryManager=None, prompt_mamnger=None) -> str:
# '''
# role\task\tools\docs\memory
# '''
# #
# doc_infos = self.create_doc_prompt(query)
# code_infos = self.create_codedoc_prompt(query)
# #
# formatted_tools, tool_names, tools_descs = self.create_tools_prompt(query)
# agent_names, agents = self.create_agent_names()
# task_prompt = self.create_task_prompt(query)
# background_prompt = self.create_background_prompt(background)
# history_prompt = self.create_history_prompt(history)
# selfmemory_prompt = self.create_selfmemory_prompt(memory, control_key="step_content")
# DocInfos = ""
# if doc_infos is not None and doc_infos!="" and doc_infos!="不存在知识库辅助信息":
# DocInfos += f"\nDocument Information: {doc_infos}"
# if code_infos is not None and code_infos!="" and code_infos!="不存在代码库辅助信息":
# DocInfos += f"\nCodeBase Infomation: {code_infos}"
# input_query = query.input_query
# logger.debug(f"{self.role.role_name} input_query: {input_query}")
# prompt = self.role.role_prompt.format(**{"agent_names": agent_names, "agents": agents, "formatted_tools": tools_descs, "tool_names": tool_names})
# #
# memory_pool_select_by_agent_key = self.select_memory_by_agent_key(memory_manager.current_memory)
# memory_pool_select_by_agent_key_context = '\n\n'.join([f"*{k}*\n{v}" for parsed_output in memory_pool_select_by_agent_key.get_parserd_output_list() for k, v in parsed_output.items() if k not in ['Action Status']])
# input_keys = parse_section(self.role.role_prompt, 'Input Format')
# #
# prompt += "\n" + BEGIN_PROMPT_INPUT
# for input_key in input_keys:
# if input_key == "Origin Query":
# prompt += "\n**Origin Query:**\n" + query.origin_query
# elif input_key == "Context":
# context = "\n".join([f"*{k}*\n{v}" for i in query.parsed_output_list for k,v in i.items() if "Action Status" !=k])
# if history:
# context = history_prompt + "\n" + context
# if not context:
# context = "there is no context"
# if self.focus_agents and memory_pool_select_by_agent_key_context:
# context = memory_pool_select_by_agent_key_context
# prompt += "\n**Context:**\n" + context + "\n" + input_query
# elif input_key == "DocInfos":
# prompt += "\n**DocInfos:**\n" + DocInfos
# elif input_key == "Question":
# prompt += "\n**Question:**\n" + input_query
# while "{{" in prompt or "}}" in prompt:
# prompt = prompt.replace("{{", "{")
# prompt = prompt.replace("}}", "}")
# # logger.debug(f"{self.role.role_name} prompt: {prompt}")
# return prompt
# def create_agent_names(self):
# random.shuffle(self.group_agents)
# agent_names = ", ".join([f'{agent.role.role_name}' for agent in self.group_agents])
# agent_descs = []
# for agent in self.group_agents:
# role_desc = agent.role.role_prompt.split("####")[1]
# while "\n\n" in role_desc:
# role_desc = role_desc.replace("\n\n", "\n")
# role_desc = role_desc.replace("\n", ",")
# agent_descs.append(f'"role name: {agent.role.role_name}\nrole description: {role_desc}"')
# return agent_names, "\n".join(agent_descs)

View File

@ -1,56 +1,68 @@
from pydantic import BaseModel
from typing import List
import json
import re
from loguru import logger
import traceback
import uuid
import copy
import copy, os
from dev_opsgpt.connector.agents import BaseAgent, CheckAgent
from dev_opsgpt.tools.base_tool import BaseTools, Tool
from coagent.connector.agents import BaseAgent
from dev_opsgpt.connector.schema import (
from coagent.connector.schema import (
Memory, Role, Message, ActionStatus, ChainConfig,
load_role_configs
)
from dev_opsgpt.connector.message_process import MessageUtils
from dev_opsgpt.connector.configs.agent_config import AGETN_CONFIGS
from coagent.connector.memory_manager import BaseMemoryManager
from coagent.connector.message_process import MessageUtils
from coagent.llm_models.llm_config import LLMConfig, EmbedConfig
from coagent.connector.configs.agent_config import AGETN_CONFIGS
role_configs = load_role_configs(AGETN_CONFIGS)
# from configs.model_config import JUPYTER_WORK_PATH
# from configs.server_config import SANDBOX_SERVER
class BaseChain:
def __init__(
self,
chainConfig: ChainConfig,
# chainConfig: ChainConfig,
agents: List[BaseAgent],
chat_turn: int = 1,
do_checker: bool = False,
# prompt_mamnger: PromptManager
sandbox_server: dict = {},
jupyter_work_path: str = "",
kb_root_path: str = "",
llm_config: LLMConfig = LLMConfig(),
embed_config: EmbedConfig = None,
log_verbose: str = "0"
) -> None:
self.chainConfig = chainConfig
self.agents = agents
# self.chainConfig = chainConfig
self.agents: List[BaseAgent] = agents
self.chat_turn = chat_turn
self.do_checker = do_checker
self.checker = CheckAgent(role=role_configs["checker"].role,
task = None,
memory = None,
do_search = role_configs["checker"].do_search,
do_doc_retrieval = role_configs["checker"].do_doc_retrieval,
do_tool_retrieval = role_configs["checker"].do_tool_retrieval,
do_filter=False, do_use_self_memory=False)
self.messageUtils = MessageUtils()
self.sandbox_server = sandbox_server
self.jupyter_work_path = jupyter_work_path
self.llm_config = llm_config
self.log_verbose = max(os.environ.get("log_verbose", "0"), log_verbose)
self.checker = BaseAgent(role=role_configs["checker"].role,
prompt_config=role_configs["checker"].prompt_config,
task = None, memory = None,
llm_config=llm_config, embed_config=embed_config,
sandbox_server=sandbox_server, jupyter_work_path=jupyter_work_path,
kb_root_path=kb_root_path
)
self.messageUtils = MessageUtils(None, sandbox_server, self.jupyter_work_path, embed_config, llm_config, kb_root_path, log_verbose)
# all memory created by agent until instance deleted
self.global_memory = Memory(messages=[])
def step(self, query: Message, history: Memory = None, background: Memory = None, memory_pool: Memory = None) -> Message:
def step(self, query: Message, history: Memory = None, background: Memory = None, memory_manager: BaseMemoryManager = None) -> Message:
'''execute chain'''
for output_message, local_memory in self.astep(query, history, background, memory_pool):
for output_message, local_memory in self.astep(query, history, background, memory_manager):
pass
return output_message, local_memory
def astep(self, query: Message, history: Memory = None, background: Memory = None, memory_pool: Memory = None) -> Message:
def pre_print(self, query: Message, history: Memory = None, background: Memory = None, memory_manager: BaseMemoryManager = None) -> Message:
'''execute chain'''
for agent in self.agents:
agent.pre_print(query, history, background=background, memory_manager=memory_manager)
def astep(self, query: Message, history: Memory = None, background: Memory = None, memory_manager: BaseMemoryManager = None) -> Message:
'''execute chain'''
local_memory = Memory(messages=[])
input_message = copy.deepcopy(query)
@ -61,42 +73,35 @@ class BaseChain:
# local_memory.append(input_message)
while step_nums > 0:
for agent in self.agents:
for output_message in agent.arun(input_message, history, background=background, memory_pool=memory_pool):
for output_message in agent.astep(input_message, history, background=background, memory_manager=memory_manager):
# logger.debug(f"local_memory {local_memory + output_message}")
yield output_message, local_memory + output_message
output_message = self.messageUtils.inherit_extrainfo(input_message, output_message)
# according the output to choose one action for code_content or tool_content
# logger.info(f"{agent.role.role_name} currenct message: {output_message.step_content}\n next llm question: {output_message.input_query}")
output_message = self.messageUtils.parser(output_message)
yield output_message, local_memory + output_message
# output_message = self.step_router(output_message)
input_message = output_message
self.global_memory.append(output_message)
local_memory.append(output_message)
# when get finished signal can stop early
if output_message.action_status == ActionStatus.FINISHED or output_message.action_status == ActionStatus.STOPED:
if output_message.action_status == ActionStatus.FINISHED or output_message.action_status == ActionStatus.STOPPED:
action_status = False
break
if output_message.action_status == ActionStatus.FINISHED:
break
if self.do_checker and self.chat_turn > 1:
# logger.debug(f"{self.checker.role.role_name} input global memory: {self.global_memory.to_str_messages(content_key='step_content', return_all=False)}")
for check_message in self.checker.arun(query, background=local_memory, memory_pool=memory_pool):
for check_message in self.checker.astep(query, background=local_memory, memory_manager=memory_manager):
pass
check_message = self.messageUtils.parser(check_message)
check_message = self.messageUtils.filter(check_message)
check_message = self.messageUtils.inherit_extrainfo(output_message, check_message)
logger.debug(f"{self.checker.role.role_name}: {check_message.role_content}")
# logger.debug(f"{self.checker.role.role_name}: {check_message.role_content}")
if check_message.action_status == ActionStatus.FINISHED:
self.global_memory.append(check_message)
break
step_nums -= 1
#
output_message = check_message or output_message # 返回chain和checker的结果
@ -109,8 +114,6 @@ class BaseChain:
def get_memory_str(self, content_key="role_content") -> Memory:
memory = self.global_memory
# for i in memory.to_tuple_messages(content_key=content_key):
# logger.debug(f"{i}")
return "\n".join([": ".join(i) for i in memory.to_tuple_messages(content_key=content_key)])
def get_agents_memory(self, content_key="role_content"):

View File

@ -0,0 +1,12 @@
from typing import List
from loguru import logger
from coagent.connector.agents import BaseAgent
from .base_chain import BaseChain
class ExecutorRefineChain(BaseChain):
def __init__(self, agents: List[BaseAgent], do_code_exec: bool = False) -> None:
super().__init__(agents, do_code_exec)

View File

@ -0,0 +1,9 @@
from .agent_config import AGETN_CONFIGS
from .chain_config import CHAIN_CONFIGS
from .phase_config import PHASE_CONFIGS
from .prompt_config import BASE_PROMPT_CONFIGS, EXECUTOR_PROMPT_CONFIGS, SELECTOR_PROMPT_CONFIGS, BASE_NOTOOLPROMPT_CONFIGS
__all__ = [
"AGETN_CONFIGS", "CHAIN_CONFIGS", "PHASE_CONFIGS",
"BASE_PROMPT_CONFIGS", "EXECUTOR_PROMPT_CONFIGS", "SELECTOR_PROMPT_CONFIGS", "BASE_NOTOOLPROMPT_CONFIGS"
]

View File

@ -13,6 +13,7 @@ from .prompts import (
REACT_TEMPLATE_PROMPT,
REACT_TOOL_PROMPT, REACT_CODE_PROMPT, REACT_TOOL_AND_CODE_PLANNER_PROMPT, REACT_TOOL_AND_CODE_PROMPT
)
from .prompt_config import BASE_PROMPT_CONFIGS, EXECUTOR_PROMPT_CONFIGS, SELECTOR_PROMPT_CONFIGS, BASE_NOTOOLPROMPT_CONFIGS
@ -34,11 +35,9 @@ AGETN_CONFIGS = {
"role_desc": "",
"agent_type": "SelectorAgent"
},
"prompt_config": SELECTOR_PROMPT_CONFIGS,
"group_agents": ["tool_react", "code_react"],
"chat_turn": 1,
"do_search": False,
"do_doc_retrieval": False,
"do_tool_retrieval": False
},
"checker": {
"role": {
@ -48,10 +47,8 @@ AGETN_CONFIGS = {
"role_desc": "",
"agent_type": "BaseAgent"
},
"prompt_config": BASE_PROMPT_CONFIGS,
"chat_turn": 1,
"do_search": False,
"do_doc_retrieval": False,
"do_tool_retrieval": False
},
"conv_summary": {
"role": {
@ -61,10 +58,8 @@ AGETN_CONFIGS = {
"role_desc": "",
"agent_type": "BaseAgent"
},
"prompt_config": BASE_PROMPT_CONFIGS,
"chat_turn": 1,
"do_search": False,
"do_doc_retrieval": False,
"do_tool_retrieval": False
},
"general_planner": {
"role": {
@ -74,10 +69,8 @@ AGETN_CONFIGS = {
"role_desc": "",
"agent_type": "BaseAgent"
},
"prompt_config": BASE_PROMPT_CONFIGS,
"chat_turn": 1,
"do_search": False,
"do_doc_retrieval": False,
"do_tool_retrieval": False
},
"executor": {
"role": {
@ -87,11 +80,9 @@ AGETN_CONFIGS = {
"role_desc": "",
"agent_type": "ExecutorAgent",
},
"prompt_config": EXECUTOR_PROMPT_CONFIGS,
"stop": "\n**Observation:**",
"chat_turn": 1,
"do_search": False,
"do_doc_retrieval": False,
"do_tool_retrieval": False
},
"base_refiner": {
"role": {
@ -101,10 +92,8 @@ AGETN_CONFIGS = {
"role_desc": "",
"agent_type": "BaseAgent"
},
"prompt_config": BASE_PROMPT_CONFIGS,
"chat_turn": 1,
"do_search": False,
"do_doc_retrieval": False,
"do_tool_retrieval": False
},
"planner": {
"role": {
@ -114,10 +103,8 @@ AGETN_CONFIGS = {
"role_desc": "",
"agent_type": "BaseAgent"
},
"prompt_config": BASE_PROMPT_CONFIGS,
"chat_turn": 1,
"do_search": False,
"do_doc_retrieval": False,
"do_tool_retrieval": False
},
"intention_recognizer": {
"role": {
@ -127,10 +114,8 @@ AGETN_CONFIGS = {
"role_desc": "",
"agent_type": "BaseAgent"
},
"prompt_config": BASE_PROMPT_CONFIGS,
"chat_turn": 1,
"do_search": False,
"do_doc_retrieval": False,
"do_tool_retrieval": False
},
"tool_planner": {
"role": {
@ -140,10 +125,8 @@ AGETN_CONFIGS = {
"role_desc": "",
"agent_type": "BaseAgent"
},
"prompt_config": BASE_PROMPT_CONFIGS,
"chat_turn": 1,
"do_search": False,
"do_doc_retrieval": False,
"do_tool_retrieval": False
},
"tool_and_code_react": {
"role": {
@ -153,11 +136,9 @@ AGETN_CONFIGS = {
"role_desc": "",
"agent_type": "ReactAgent",
},
"prompt_config": BASE_PROMPT_CONFIGS,
"stop": "\n**Observation:**",
"chat_turn": 7,
"do_search": False,
"do_doc_retrieval": False,
"do_tool_retrieval": False
},
"tool_and_code_planner": {
"role": {
@ -167,10 +148,8 @@ AGETN_CONFIGS = {
"role_desc": "",
"agent_type": "BaseAgent"
},
"prompt_config": BASE_PROMPT_CONFIGS,
"chat_turn": 1,
"do_search": False,
"do_doc_retrieval": False,
"do_tool_retrieval": False
},
"tool_react": {
"role": {
@ -180,10 +159,8 @@ AGETN_CONFIGS = {
"role_desc": "",
"agent_type": "ReactAgent"
},
"prompt_config": BASE_PROMPT_CONFIGS,
"chat_turn": 5,
"do_search": False,
"do_doc_retrieval": False,
"do_tool_retrieval": False,
"stop": "\n**Observation:**"
},
"code_react": {
@ -194,10 +171,8 @@ AGETN_CONFIGS = {
"role_desc": "",
"agent_type": "ReactAgent"
},
"prompt_config": BASE_NOTOOLPROMPT_CONFIGS,
"chat_turn": 5,
"do_search": False,
"do_doc_retrieval": False,
"do_tool_retrieval": False,
"stop": "\n**Observation:**"
},
"qaer": {
@ -208,23 +183,19 @@ AGETN_CONFIGS = {
"role_desc": "",
"agent_type": "BaseAgent"
},
"prompt_config": BASE_PROMPT_CONFIGS,
"chat_turn": 1,
"do_search": False,
"do_doc_retrieval": False,
"do_tool_retrieval": False
},
"code_qaer": {
"role": {
"role_prompt": CODE_QA_PROMPT ,
"role_prompt": CODE_QA_PROMPT,
"role_type": "assistant",
"role_name": "code_qaer",
"role_desc": "",
"agent_type": "BaseAgent"
},
"prompt_config": BASE_PROMPT_CONFIGS,
"chat_turn": 1,
"do_search": False,
"do_doc_retrieval": True,
"do_tool_retrieval": False
},
"searcher": {
"role": {
@ -234,10 +205,8 @@ AGETN_CONFIGS = {
"role_desc": "",
"agent_type": "BaseAgent"
},
"prompt_config": BASE_PROMPT_CONFIGS,
"chat_turn": 1,
"do_search": True,
"do_doc_retrieval": False,
"do_tool_retrieval": False
},
"metaGPT_PRD": {
"role": {
@ -247,10 +216,8 @@ AGETN_CONFIGS = {
"role_desc": "",
"agent_type": "BaseAgent"
},
"prompt_config": BASE_PROMPT_CONFIGS,
"chat_turn": 1,
"do_search": False,
"do_doc_retrieval": False,
"do_tool_retrieval": False,
"focus_agents": [],
"focus_message_keys": [],
},
@ -263,10 +230,8 @@ AGETN_CONFIGS = {
"role_desc": "",
"agent_type": "BaseAgent"
},
"prompt_config": BASE_PROMPT_CONFIGS,
"chat_turn": 1,
"do_search": False,
"do_doc_retrieval": False,
"do_tool_retrieval": False,
"focus_agents": ["metaGPT_PRD"],
"focus_message_keys": [],
},
@ -278,10 +243,8 @@ AGETN_CONFIGS = {
"role_desc": "",
"agent_type": "BaseAgent"
},
"prompt_config": BASE_PROMPT_CONFIGS,
"chat_turn": 1,
"do_search": False,
"do_doc_retrieval": False,
"do_tool_retrieval": False,
"focus_agents": ["metaGPT_DESIGN"],
"focus_message_keys": [],
},
@ -293,10 +256,8 @@ AGETN_CONFIGS = {
"role_desc": "",
"agent_type": "ExecutorAgent"
},
"prompt_config": EXECUTOR_PROMPT_CONFIGS,
"chat_turn": 1,
"do_search": False,
"do_doc_retrieval": False,
"do_tool_retrieval": False,
"focus_agents": ["metaGPT_DESIGN", "metaGPT_TASK"],
"focus_message_keys": [],
},

View File

@ -88,26 +88,26 @@ PHASE_CONFIGS = {
"do_tool_retrieval": False,
"do_using_tool": False
},
# "metagpt_code_devlop": {
# "phase_name": "metagpt_code_devlop",
# "phase_type": "BasePhase",
# "chains": ["metagptChain",],
# "do_summary": False,
# "do_search": False,
# "do_doc_retrieval": False,
# "do_code_retrieval": False,
# "do_tool_retrieval": False,
# "do_using_tool": False
# },
# "baseGroupPhase": {
# "phase_name": "baseGroupPhase",
# "phase_type": "BasePhase",
# "chains": ["baseGroupChain"],
# "do_summary": False,
# "do_search": False,
# "do_doc_retrieval": False,
# "do_code_retrieval": False,
# "do_tool_retrieval": False,
# "do_using_tool": False
# },
"metagpt_code_devlop": {
"phase_name": "metagpt_code_devlop",
"phase_type": "BasePhase",
"chains": ["metagptChain",],
"do_summary": False,
"do_search": False,
"do_doc_retrieval": False,
"do_code_retrieval": False,
"do_tool_retrieval": False,
"do_using_tool": False
},
"baseGroupPhase": {
"phase_name": "baseGroupPhase",
"phase_type": "BasePhase",
"chains": ["baseGroupChain"],
"do_summary": False,
"do_search": False,
"do_doc_retrieval": False,
"do_code_retrieval": False,
"do_tool_retrieval": False,
"do_using_tool": False
},
}

View File

@ -0,0 +1,43 @@
BASE_PROMPT_CONFIGS = [
{"field_name": 'agent_profile', "function_name": 'handle_agent_profile', "is_context": False},
{"field_name": 'tool_information',"function_name": 'handle_tool_data', "is_context": False},
{"field_name": 'context_placeholder', "function_name": '', "is_context": True},
{"field_name": 'reference_documents', "function_name": 'handle_doc_info'},
{"field_name": 'session_records', "function_name": 'handle_session_records'},
{"field_name": 'task_records', "function_name": 'handle_task_records'},
{"field_name": 'output_format', "function_name": 'handle_output_format', 'title': 'Response Output Format', "is_context": False},
{"field_name": 'begin!!!', "function_name": 'handle_response', "is_context": False, "omit_if_empty": False}
]
BASE_NOTOOLPROMPT_CONFIGS = [
{"field_name": 'agent_profile', "function_name": 'handle_agent_profile', "is_context": False},
{"field_name": 'context_placeholder', "function_name": '', "is_context": True},
{"field_name": 'reference_documents', "function_name": 'handle_doc_info'},
{"field_name": 'session_records', "function_name": 'handle_session_records'},
{"field_name": 'output_format', "function_name": 'handle_output_format', 'title': 'Response Output Format', "is_context": False},
{"field_name": 'begin!!!', "function_name": 'handle_response', "is_context": False, "omit_if_empty": False}
]
EXECUTOR_PROMPT_CONFIGS = [
{"field_name": 'agent_profile', "function_name": 'handle_agent_profile', "is_context": False},
{"field_name": 'tool_information',"function_name": 'handle_tool_data', "is_context": False},
{"field_name": 'context_placeholder', "function_name": '', "is_context": True},
{"field_name": 'reference_documents', "function_name": 'handle_doc_info'},
{"field_name": 'session_records', "function_name": 'handle_session_records'},
{"field_name": 'task_records', "function_name": 'handle_task_records'},
{"field_name": 'current_plan', "function_name": 'handle_current_plan'},
{"field_name": 'output_format', "function_name": 'handle_output_format', 'title': 'Response Output Format', "is_context": False},
{"field_name": 'begin!!!', "function_name": 'handle_response', "is_context": False, "omit_if_empty": False}
]
SELECTOR_PROMPT_CONFIGS = [
{"field_name": 'agent_profile', "function_name": 'handle_agent_profile', "is_context": False},
{"field_name": 'tool_information',"function_name": 'handle_tool_data', "is_context": False},
{"field_name": 'agent_infomation', "function_name": 'handle_agent_data', "is_context": False, "omit_if_empty": False},
{"field_name": 'context_placeholder', "function_name": '', "is_context": True},
{"field_name": 'reference_documents', "function_name": 'handle_doc_info'},
{"field_name": 'session_records', "function_name": 'handle_session_records'},
{"field_name": 'current_plan', "function_name": 'handle_current_plan'},
{"field_name": 'output_format', "function_name": 'handle_output_format', 'title': 'Response Output Format', "is_context": False},
{"field_name": 'begin!!!', "function_name": 'handle_response', "is_context": False, "omit_if_empty": False}
]

View File

@ -8,9 +8,9 @@ from .intention_template_prompt import RECOGNIZE_INTENTION_PROMPT
from .checker_template_prompt import CHECKER_PROMPT, CHECKER_TEMPLATE_PROMPT
from .summary_template_prompt import CONV_SUMMARY_PROMPT
from .summary_template_prompt import CONV_SUMMARY_PROMPT, CONV_SUMMARY_PROMPT_SPEC
from .qa_template_prompt import QA_PROMPT, CODE_QA_PROMPT, QA_TEMPLATE_PROMPT
from .qa_template_prompt import QA_PROMPT, CODE_QA_PROMPT, QA_TEMPLATE_PROMPT, CODE_PROMPT_TEMPLATE, CODE_INTERPERT_TEMPLATE, ORIGIN_TEMPLATE_PROMPT
from .executor_template_prompt import EXECUTOR_TEMPLATE_PROMPT
from .refine_template_prompt import REFINE_TEMPLATE_PROMPT
@ -30,8 +30,8 @@ __all__ = [
"RECOGNIZE_INTENTION_PROMPT",
"PRD_WRITER_METAGPT_PROMPT", "DESIGN_WRITER_METAGPT_PROMPT", "TASK_WRITER_METAGPT_PROMPT", "CODE_WRITER_METAGPT_PROMPT",
"CHECKER_PROMPT", "CHECKER_TEMPLATE_PROMPT",
"CONV_SUMMARY_PROMPT",
"QA_PROMPT", "CODE_QA_PROMPT", "QA_TEMPLATE_PROMPT",
"CONV_SUMMARY_PROMPT", "CONV_SUMMARY_PROMPT_SPEC",
"QA_PROMPT", "CODE_QA_PROMPT", "QA_TEMPLATE_PROMPT", "CODE_PROMPT_TEMPLATE", "CODE_INTERPERT_TEMPLATE", "ORIGIN_TEMPLATE_PROMPT",
"EXECUTOR_TEMPLATE_PROMPT",
"REFINE_TEMPLATE_PROMPT",
"SELECTOR_AGENT_TEMPLATE_PROMPT",

View File

@ -0,0 +1,21 @@
SELECTOR_AGENT_TEMPLATE_PROMPT = """#### Agent Profile
Your goal is to response according the Context Data's information with the role that will best facilitate a solution, taking into account all relevant context (Context) provided.
When you need to select the appropriate role for handling a user's query, carefully read the provided role names, role descriptions and tool list.
ATTENTION: response carefully referenced "Response Output Format" in format.
#### Input Format
**Origin Query:** the initial question or objective that the user wanted to achieve
**Context:** the context history to determine if Origin Query has been achieved.
#### Response Output Format
**Thoughts:** think the reason step by step about why you selecte one role
**Role:** Select the role from agent names.
"""

View File

@ -1,5 +1,5 @@
CHECKER_TEMPLATE_PROMPT = """#### Checker Assistance Guidance
CHECKER_TEMPLATE_PROMPT = """#### Agent Profile
When users have completed a sequence of tasks or if there is clear evidence that no further actions are required, your role is to confirm the completion.
Your task is to assess the current situation based on the context and determine whether all objectives have been met.
@ -12,7 +12,7 @@ Each decision should be justified based on the context provided, specifying if t
**Context:** the current status and history of the tasks to determine if Origin Query has been achieved.
#### Response Output Format
**Action Status:** Set to 'finished' or 'continued'.
**Action Status:** finished or continued
If it's 'finished', the context can answer the origin query.
If it's 'continued', the context cant answer the origin query.

View File

@ -0,0 +1,31 @@
EXECUTOR_TEMPLATE_PROMPT = """#### Agent Profile
When users need help with coding or using tools, your role is to provide precise and effective guidance.
Use the tools provided if they can solve the problem, otherwise, write the code step by step, showing only the part necessary to solve the current problem.
Each reply should contain only the guidance required for the current step either by tool usage or code.
ATTENTION: The Action Status field ensures that the tools or code mentioned in the Action can be parsed smoothly. Please make sure not to omit the Action Status field when replying.
#### Response Output Format
**Thoughts:** Considering the session records and executed steps, decide whether the current step requires the use of a tool or code_executing.
Solve the problem step by step, only displaying the thought process necessary for the current step of solving the problem.
If code_executing is required, outline the plan for executing this step.
**Action Status:** Set to 'stopped' or 'code_executing'. If it's 'stopped', the next action is to provide the final answer to the original question. If it's 'code_executing', the next step is to write the code.
**Action:** Code according to your thoughts. Use this format for code:
```python
# Write your code here
```
"""
# **Observation:** Check the results and effects of the executed code.
# ... (Repeat this Question/Thoughts/Action/Observation cycle as needed)
# **Thoughts:** I now know the final answer
# **Action Status:** Set to 'stopped'
# **Action:** The final answer to the original input question

View File

@ -1,4 +1,4 @@
PRD_WRITER_METAGPT_PROMPT = """#### PRD Writer Assistance Guidance
PRD_WRITER_METAGPT_PROMPT = """#### Agent Profile
You are a professional Product Manager, your goal is to design a concise, usable, efficient product.
According to the context, fill in the following missing information, note that each sections are returned in Python code triple quote form seperatedly.
@ -56,12 +56,12 @@ There are no unclear points.'''
DESIGN_WRITER_METAGPT_PROMPT = """#### PRD Writer Assistance Guidance
DESIGN_WRITER_METAGPT_PROMPT = """#### Agent Profile
You are an architect; the goal is to design a SOTA PEP8-compliant python system; make the best use of good open source tools.
Fill in the following missing information based on the context, note that all sections are response with code form separately.
8192 chars or 2048 tokens. Try to use them up.
ATTENTION: response carefully referenced "Response Format" in format.
ATTENTION: response carefully referenced "Response Output Format" in format.
#### Input Format
@ -69,7 +69,7 @@ ATTENTION: response carefully referenced "Response Format" in format.
**Context:** the current status and history of the tasks to determine if Origin Query has been achieved.
#### Response Format
#### Response Output Format
**Implementation approach:**
Provide as Plain text. Analyze the difficult points of the requirements, select the appropriate open-source framework.
@ -117,7 +117,7 @@ Provide as Plain text. Make clear here.
TASK_WRITER_METAGPT_PROMPT = """#### Task Plan Assistance Guidance
TASK_WRITER_METAGPT_PROMPT = """#### Agent Profile
You are a project manager, the goal is to break down tasks according to PRD/technical design, give a task list, and analyze task dependencies to start with the prerequisite modules
Based on the context, fill in the following missing information, note that all sections are returned in Python code triple quote form seperatedly.
@ -176,7 +176,7 @@ Provide as Plain text. Make clear here. For example, don't forget a main entry.
"""
CODE_WRITER_METAGPT_PROMPT = """#### Code Writer Assistance Guidance
CODE_WRITER_METAGPT_PROMPT = """#### Agent Profile
You are a professional engineer; the main goal is to write PEP8 compliant, elegant, modular, easy to read and maintain Python 3.9 code (but you can also use other programming language)
@ -204,7 +204,7 @@ ATTENTION: response carefully referenced "Response Output Format" in format **$k
#### Response Output Format
**Action Status:** Coding2File
**SaveFileName** construct a local file name based on Question and Context, such as
**SaveFileName:** construct a local file name based on Question and Context, such as
```python
$projectname/$filename.py

View File

@ -1,6 +1,6 @@
PLANNER_TEMPLATE_PROMPT = """#### Planner Assistance Guidance
PLANNER_TEMPLATE_PROMPT = """#### Agent Profile
When users need assistance with generating a sequence of achievable tasks, your role is to provide a coherent and continuous plan.
Design the plan step by step, ensuring each task builds on the completion of the previous one.
@ -27,12 +27,11 @@ If it's 'planning', the PLAN is to provide a Python list[str] of achievable task
"""
TOOL_PLANNER_PROMPT = """#### Tool Planner Assistance Guidance
TOOL_PLANNER_PROMPT = """#### Agent Profile
Helps user to break down a process of tool usage into a series of plans.
If there are no available tools, can directly answer the question.
Rrespond to humans in the most helpful and accurate way possible.
You can use the following tool: {formatted_tools}
#### Input Format

View File

@ -1,4 +1,6 @@
QA_TEMPLATE_PROMPT = """#### Question Answer Assistance Guidance
# Question Answer Assistance Guidance
QA_TEMPLATE_PROMPT = """#### Agent Profile
Based on the information provided, please answer the origin query concisely and professionally.
Attention: Follow the input format and response output format
@ -18,7 +20,7 @@ If the answer cannot be derived from the given Context and DocInfos, please say
"""
CODE_QA_PROMPT = """#### Code Answer Assistance Guidance
CODE_QA_PROMPT = """#### Agent Profile
Based on the information provided, please answer the origin query concisely and professionally.
Attention: Follow the input format and response output format
@ -51,4 +53,22 @@ $JSON_BLOB
```
"""
# 基于本地代码知识问答的提示词模版
CODE_PROMPT_TEMPLATE = """【指令】根据已知信息来回答问题。
已知信息{context}
问题{question}"""
# 代码解释模版
CODE_INTERPERT_TEMPLATE = '''{code}
解释一下这段代码'''
# CODE_QA_PROMPT = """【指令】根据已知信息来回答问"""
# 基于本地知识问答的提示词模版
ORIGIN_TEMPLATE_PROMPT = """【指令】根据已知信息,简洁和专业的来回答问题。如果无法从中得到答案,请说 “根据已知信息无法回答该问题”,不允许在答案中添加编造成分,答案请使用中文。
已知信息{context}
问题{question}"""

View File

@ -0,0 +1,103 @@
# REACT_CODE_PROMPT = """#### Agent Profile
# 1. When users need help with coding, your role is to provide precise and effective guidance.
# 2. Reply follows the format of Thoughts/Action Status/Action/Observation cycle.
# 3. Provide the final answer if they can solve the problem, otherwise, write the code step by step, showing only the part necessary to solve the current problem.
# Each reply should contain only the guidance required for the current step either by tool usage or code.
# 4. If the Response already contains content, continue writing following the format of the Response Output Format.
# #### Response Output Format
# **Thoughts:** Considering the session records and executed steps, solve the problem step by step, only displaying the thought process necessary for the current step of solving the problem,
# outline the plan for executing this step.
# **Action Status:** Set to 'stopped' or 'code_executing'.
# If it's 'stopped', the action is to provide the final answer to the session records and executed steps.
# If it's 'code_executing', the action is to write the code.
# **Action:**
# ```python
# # Write your code here
# ...
# ```
# **Observation:** Check the results and effects of the executed code.
# ... (Repeat this "Thoughts/Action Status/Action/Observation" cycle format as needed)
# **Thoughts:** Considering the session records and executed steps, give the final answer
# .
# **Action Status:** stopped
# **Action:** Response the final answer to the session records.
# """
REACT_CODE_PROMPT = """#### Agent Profile
When users need help with coding, your role is to provide precise and effective guidance.
Write the code step by step, showing only the part necessary to solve the current problem. Each reply should contain only the code required for the current step.
#### Response Output Format
**Thoughts:** According the previous context, solve the problem step by step, only displaying the thought process necessary for the current step of solving the problem,
outline the plan for executing this step.
**Action Status:** Set to 'stopped' or 'code_executing'.
If it's 'stopped', the action is to provide the final answer to the session records and executed steps.
If it's 'code_executing', the action is to write the code.
**Action:**
```python
# Write your code here
...
```
**Observation:** Check the results and effects of the executed code.
... (Repeat this "Thoughts/Action Status/Action/Observation" cycle format as needed)
**Thoughts:** Considering the session records and executed steps, give the final answer
.
**Action Status:** stopped
**Action:** Response the final answer to the session records.
"""
# REACT_CODE_PROMPT = """#### Writing Code Assistance Guidance
# When users need help with coding, your role is to provide precise and effective guidance.
# Write the code step by step, showing only the part necessary to solve the current problem. Each reply should contain only the code required for the current step.
# #### Response Process
# **Question:** First, clarify the problem to be solved.
# **Thoughts:** Based on the question and observations above, provide the plan for executing this step.
# **Action Status:** Set to 'stoped' or 'code_executing'. If it's 'stoped', the action is to provide the final answer to the original question. If it's 'code_executing', the action is to write the code.
# **Action:**
# ```python
# # Write your code here
# import os
# ...
# ```
# **Observation:** Check the results and effects of the executed code.
# ... (Repeat this Thoughts/Action/Observation cycle as needed)
# **Thoughts:** I now know the final answer
# **Action Status:** Set to 'stoped'
# **Action:** The final answer to the original input question
# """

View File

@ -0,0 +1,37 @@
REACT_TEMPLATE_PROMPT = """#### Agent Profile
1. When users need help with coding, your role is to provide precise and effective guidance.
2. Reply follows the format of Thoughts/Action Status/Action/Observation cycle.
3. Provide the final answer if they can solve the problem, otherwise, write the code step by step, showing only the part necessary to solve the current problem.
Each reply should contain only the guidance required for the current step either by tool usage or code.
4. If the Response already contains content, continue writing following the format of the Response Output Format.
ATTENTION: Under the "Response" heading, the output format strictly adheres to the content specified in the "Response Output Format."
#### Response Output Format
**Question:** First, clarify the problem to be solved.
**Thoughts:** Based on the Session Records or observations above, provide the plan for executing this step.
**Action Status:** Set to either 'stopped' or 'code_executing'. If it's 'stopped', the next action is to provide the final answer to the original question. If it's 'code_executing', the next step is to write the code.
**Action:** Code according to your thoughts. Use this format for code:
```python
# Write your code here
```
**Observation:** Check the results and effects of the executed code.
... (Repeat this "Thoughts/Action Status/Action/Observation" cycle format as needed)
**Thoughts:** Considering the session records and executed steps, give the final answer.
**Action Status:** stopped
**Action:** Response the final answer to the session records.
"""

View File

@ -1,13 +1,9 @@
REACT_TOOL_AND_CODE_PLANNER_PROMPT = """#### Planner Assistance Guidance
REACT_TOOL_AND_CODE_PLANNER_PROMPT = """#### Agent Profile
When users seek assistance in breaking down complex issues into manageable and actionable steps,
your responsibility is to deliver a well-organized strategy or resolution through the use of tools or coding.
ATTENTION: response carefully referenced "Response Output Format" in format.
You may use the following tools:
{formatted_tools}
Depending on the user's query, the response will either be a plan detailing the use of tools and reasoning, or a direct answer if the problem does not require breaking down.
#### Input Format
**Question:** First, clarify the problem to be solved.

View File

@ -0,0 +1,197 @@
REACT_TOOL_AND_CODE_PROMPT = """#### Agent Profile
When users need help with coding or using tools, your role is to provide precise and effective guidance.
Use the tools provided if they can solve the problem, otherwise, write the code step by step, showing only the part necessary to solve the current problem.
Each reply should contain only the guidance required for the current step either by tool usage or code.
ATTENTION: The Action Status field ensures that the tools or code mentioned in the Action can be parsed smoothly. Please make sure not to omit the Action Status field when replying.
#### Tool Infomation
You can use these tools:\n{formatted_tools}
Valid "tool_name" value:\n{tool_names}
#### Response Output Format
**Thoughts:** Considering the session records and executed steps, decide whether the current step requires the use of a tool or code_executing. Solve the problem step by step, only displaying the thought process necessary for the current step of solving the problem. If code_executing is required, outline the plan for executing this step.
**Action Status:** stoped, tool_using or code_executing
Use 'stopped' when the task has been completed, and no further use of tools or execution of code is necessary.
Use 'tool_using' when the current step in the process involves utilizing a tool to proceed.
Use 'code_executing' when the current step requires writing and executing code.
**Action:**
If Action Status is 'tool_using', format the tool action in JSON from Question and Observation, enclosed in a code block, like this:
```json
{
"tool_name": "$TOOL_NAME",
"tool_params": "$INPUT"
}
```
If Action Status is 'code_executing', write the necessary code to solve the issue, enclosed in a code block, like this:
```python
Write your running code here
```
If Action Status is 'stopped', provide the final response or instructions in written form, enclosed in a code block, like this:
```text
The final response or instructions to the user question.
```
**Observation:** Check the results and effects of the executed action.
... (Repeat this Thoughts/Action Status/Action/Observation cycle as needed)
**Thoughts:** Conclude the final response to the user question.
**Action Status:** stoped
**Action:** The final answer or guidance to the user question.
"""
# REACT_TOOL_AND_CODE_PROMPT = """#### Agent Profile
# 1. When users need help with coding or using tools, your role is to provide precise and effective guidance.
# 2. Reply follows the format of Thoughts/Action Status/Action/Observation cycle.
# 3. Use the tools provided if they can solve the problem, otherwise, write the code step by step, showing only the part necessary to solve the current problem.
# Each reply should contain only the guidance required for the current step either by tool usage or code.
# 4. If the Response already contains content, continue writing following the format of the Response Output Format.
# ATTENTION: The "Action Status" field ensures that the tools or code mentioned in the "Action" can be parsed smoothly. Please make sure not to omit the "Action Status" field when replying.
# #### Tool Infomation
# You can use these tools:\n{formatted_tools}
# Valid "tool_name" value:\n{tool_names}
# #### Response Output Format
# **Thoughts:** Considering the user's question, previously executed steps, and the plan, decide whether the current step requires the use of a tool or code_executing.
# Solve the problem step by step, only displaying the thought process necessary for the current step of solving the problem.
# If a tool can be used, provide its name and parameters. If code_executing is required, outline the plan for executing this step.
# **Action Status:** stoped, tool_using, or code_executing. (Choose one from these three statuses.)
# # If the task is done, set it to 'stoped'.
# # If using a tool, set it to 'tool_using'.
# # If writing code, set it to 'code_executing'.
# **Action:**
# If Action Status is 'tool_using', format the tool action in JSON from Question and Observation, enclosed in a code block, like this:
# ```json
# {
# "tool_name": "$TOOL_NAME",
# "tool_params": "$INPUT"
# }
# ```
# If Action Status is 'code_executing', write the necessary code to solve the issue, enclosed in a code block, like this:
# ```python
# Write your running code here
# ...
# ```
# If Action Status is 'stopped', provide the final response or instructions in written form, enclosed in a code block, like this:
# ```text
# The final response or instructions to the original input question.
# ```
# **Observation:** Check the results and effects of the executed action.
# ... (Repeat this Thoughts/Action Status/Action/Observation cycle as needed)
# **Thoughts:** Considering the user's question, previously executed steps, give the final answer.
# **Action Status:** stopped
# **Action:** Response the final answer to the session records.
# """
# REACT_TOOL_AND_CODE_PROMPT = """#### Code and Tool Agent Assistance Guidance
# When users need help with coding or using tools, your role is to provide precise and effective guidance. Use the tools provided if they can solve the problem, otherwise, write the code step by step, showing only the part necessary to solve the current problem. Each reply should contain only the guidance required for the current step either by tool usage or code.
# #### Tool Infomation
# You can use these tools:\n{formatted_tools}
# Valid "tool_name" value:\n{tool_names}
# #### Response Process
# **Question:** Start by understanding the input question to be answered.
# **Thoughts:** Considering the user's question, previously executed steps, and the plan, decide whether the current step requires the use of a tool or code_executing. Solve the problem step by step, only displaying the thought process necessary for the current step of solving the problem. If a tool can be used, provide its name and parameters. If code_executing is required, outline the plan for executing this step.
# **Action Status:** stoped, tool_using, or code_executing. (Choose one from these three statuses.)
# If the task is done, set it to 'stoped'.
# If using a tool, set it to 'tool_using'.
# If writing code, set it to 'code_executing'.
# **Action:**
# If using a tool, use the tools by formatting the tool action in JSON from Question and Observation:. The format should be:
# ```json
# {{
# "tool_name": "$TOOL_NAME",
# "tool_params": "$INPUT"
# }}
# ```
# If the problem cannot be solved with a tool at the moment, then proceed to solve the issue using code. Output the following format to execute the code:
# ```python
# Write your code here
# ```
# **Observation:** Check the results and effects of the executed action.
# ... (Repeat this Thoughts/Action/Observation cycle as needed)
# **Thoughts:** Conclude the final response to the input question.
# **Action Status:** stoped
# **Action:** The final answer or guidance to the original input question.
# """
# REACT_TOOL_AND_CODE_PROMPT = """你是一个使用工具与代码的助手。
# 如果现有工具不足以完成整个任务,请不要添加不存在的工具,只使用现有工具完成可能的部分。
# 如果当前步骤不能使用工具完成,将由代码来完成。
# 有效的"action"值为:"stopped"(已经完成用户的任务) 、 "tool_using" (使用工具来回答问题) 或 'code_executing'(结合总结下述思维链过程编写下一步的可执行代码)。
# 尽可能地以有帮助和准确的方式回应人类,你可以使用以下工具:
# {formatted_tools}
# 如果现在的步骤可以用工具解决问题,请仅在每个$JSON_BLOB中提供一个action如下所示
# ```
# {{{{
# "action": $ACTION,
# "tool_name": $TOOL_NAME
# "tool_params": $INPUT
# }}}}
# ```
# 若当前无法通过工具解决问题,则使用代码解决问题
# 请仅在每个$JSON_BLOB中提供一个action如下所示
# ```
# {{{{'action': $ACTION,'code_content': $CODE}}}}
# ```
# 按照以下思维链格式进行回应($JSON_BLOB要求符合上述规定
# 问题:输入问题以回答
# 思考:考虑之前和之后的步骤
# 行动:
# ```
# $JSON_BLOB
# ```
# 观察:行动结果
# ...(重复思考/行动/观察N次
# 思考:我知道该如何回应
# 行动:
# ```
# $JSON_BLOB
# ```
# """

View File

@ -1,47 +1,43 @@
REACT_TOOL_PROMPT = """#### Tool Agent Assistance Guidance
REACT_TOOL_PROMPT = """#### Agent Profile
When interacting with users, your role is to respond in a helpful and accurate manner using the tools available. Follow the steps below to ensure efficient and effective use of the tools.
Please note that all the tools you can use are listed below. You can only choose from these tools for use. If there are no suitable tools, please do not invent any tools. Just let the user know that you do not have suitable tools to use.
Please note that all the tools you can use are listed below. You can only choose from these tools for use.
#### Tool List
If there are no suitable tools, please do not invent any tools. Just let the user know that you do not have suitable tools to use.
you can use these tools:\n{formatted_tools}
ATTENTION: The Action Status field ensures that the tools or code mentioned in the Action can be parsed smoothly. Please make sure not to omit the Action Status field when replying.
valid "tool_name" value is:\n{tool_names}
#### Response Output Format
#### Response Process
**Thoughts:** According the previous observations, plan the approach for using the tool effectively.
**Question:** Start by understanding the input question to be answered.
**Thoughts:** Based on the question and previous observations, plan the approach for using the tool effectively.
**Action Status:** Set to either 'stoped' or 'tool_using'. If 'stoped', provide the final response to the original question. If 'tool_using', proceed with using the specified tool.
**Action Status:** Set to either 'stopped' or 'tool_using'. If 'stopped', provide the final response to the original question. If 'tool_using', proceed with using the specified tool.
**Action:** Use the tools by formatting the tool action in JSON. The format should be:
```json
{{
{
"tool_name": "$TOOL_NAME",
"tool_params": "$INPUT"
}}
}
```
**Observation:** Evaluate the outcome of the tool's usage.
... (Repeat this Thoughts/Action/Observation cycle as needed)
... (Repeat this Thoughts/Action Status/Action/Observation cycle as needed)
**Thoughts:** Determine the final response based on the results.
**Action Status:** Set to 'stoped'
**Action Status:** Set to 'stopped'
**Action:** Conclude with the final response to the original question in this format:
```json
{{
{
"tool_params": "Final response to be provided to the user",
"tool_name": "notool",
}}
}
```
"""
@ -49,7 +45,7 @@ valid "tool_name" value is:\n{tool_names}
# REACT_TOOL_PROMPT = """尽可能地以有帮助和准确的方式回应人类。您可以使用以下工具:
# {formatted_tools}
# 使用json blob来指定一个工具提供一个action关键字工具名称和一个tool_params关键字工具输入
# 有效的"action"值为:"stoped" 或 "tool_using" (使用工具来回答问题)
# 有效的"action"值为:"stopped" 或 "tool_using" (使用工具来回答问题)
# 有效的"tool_name"值为:{tool_names}
# 请仅在每个$JSON_BLOB中提供一个action如下所示
# ```
@ -73,7 +69,7 @@ valid "tool_name" value is:\n{tool_names}
# 行动:
# ```
# {{{{
# "action": "stoped",
# "action": "stopped",
# "tool_name": "notool",
# "tool_params": "最终返回答案给到用户"
# }}}}

View File

@ -1,4 +1,4 @@
REFINE_TEMPLATE_PROMPT = """#### Refiner Assistance Guidance
REFINE_TEMPLATE_PROMPT = """#### Agent Profile
When users have a sequence of tasks that require optimization or adjustment based on feedback from the context, your role is to refine the existing plan.
Your task is to identify where improvements can be made and provide a revised plan that is more efficient or effective.

View File

@ -0,0 +1,40 @@
CONV_SUMMARY_PROMPT = """尽可能地以有帮助和准确的方式回应人类,根据“背景信息”中的有效信息回答问题,
使用 JSON Blob 来指定一个返回的内容提供一个 action行动
有效的 'action' 值为'finished'(任务已经可以通过上下文信息可以回答) or 'continue' 根据背景信息回答问题
在每个 $JSON_BLOB 中仅提供一个 action如下所示
```
{{'action': $ACTION, 'content': '根据背景信息回答问题'}}
```
按照以下格式进行回应
问题输入问题以回答
行动
```
$JSON_BLOB
```
"""
CONV_SUMMARY_PROMPT = """尽可能地以有帮助和准确的方式回应人类
根据背景信息中的有效信息回答问题同时展现解答的过程和内容
若能根背景信息回答问题则直接回答
否则总结背景信息的内容
"""
CONV_SUMMARY_PROMPT_SPEC = """
Your job is to summarize a history of previous messages in a conversation between an AI persona and a human.
The conversation you are given is a fixed context window and may not be complete.
Messages sent by the AI are marked with the 'assistant' role.
The AI 'assistant' can also make calls to functions, whose outputs can be seen in messages with the 'function' role.
Things the AI says in the message content are considered inner monologue and are not seen by the user.
The only AI messages seen by the user are from when the AI uses 'send_message'.
Messages the user sends are in the 'user' role.
The 'user' role is also used for important system events, such as login events and heartbeat events (heartbeats run the AI's program without user action, allowing the AI to act without prompting from the user sending them a message).
Summarize what happened in the conversation from the perspective of the AI (use the first person).
Keep your summary less than 100 words, do NOT exceed this word limit.
Only output the summary, do NOT include anything else in your output.
--- conversation
{conversation}
---
"""

View File

@ -0,0 +1,430 @@
from abc import abstractmethod, ABC
from typing import List
import os, sys, copy, json
from jieba.analyse import extract_tags
from collections import Counter
from loguru import logger
from langchain.docstore.document import Document
from .schema import Memory, Message
from coagent.service.service_factory import KBServiceFactory
from coagent.llm_models import getChatModel, getChatModelFromConfig
from coagent.llm_models.llm_config import EmbedConfig, LLMConfig
from coagent.embeddings.utils import load_embeddings_from_path
from coagent.utils.common_utils import save_to_json_file, read_json_file, addMinutesToTime
from coagent.connector.configs.prompts import CONV_SUMMARY_PROMPT_SPEC
from coagent.orm import table_init
# from configs.model_config import KB_ROOT_PATH, EMBEDDING_MODEL, EMBEDDING_DEVICE, SCORE_THRESHOLD
# from configs.model_config import embedding_model_dict
class BaseMemoryManager(ABC):
"""
This class represents a local memory manager that inherits from BaseMemoryManager.
Attributes:
- user_name: A string representing the user name. Default is "default".
- unique_name: A string representing the unique name. Default is "default".
- memory_type: A string representing the memory type. Default is "recall".
- do_init: A boolean indicating whether to initialize. Default is False.
- current_memory: An instance of Memory class representing the current memory.
- recall_memory: An instance of Memory class representing the recall memory.
- summary_memory: An instance of Memory class representing the summary memory.
- save_message_keys: A list of strings representing the keys for saving messages.
Methods:
- __init__: Initializes the LocalMemoryManager with the given user_name, unique_name, memory_type, and do_init.
- init_vb: Initializes the vb.
- append: Appends a message to the recall memory, current memory, and summary memory.
- extend: Extends the recall memory, current memory, and summary memory.
- save: Saves the memory to the specified directory.
- load: Loads the memory from the specified directory and returns a Memory instance.
- save_new_to_vs: Saves new messages to the vector space.
- save_to_vs: Saves the memory to the vector space.
- router_retrieval: Routes the retrieval based on the retrieval type.
- embedding_retrieval: Retrieves messages based on embedding.
- text_retrieval: Retrieves messages based on text.
- datetime_retrieval: Retrieves messages based on datetime.
- recursive_summary: Performs recursive summarization of messages.
"""
def __init__(
self,
user_name: str = "default",
unique_name: str = "default",
memory_type: str = "recall",
do_init: bool = False,
):
"""
Initializes the LocalMemoryManager with the given parameters.
Args:
- user_name: A string representing the user name. Default is "default".
- unique_name: A string representing the unique name. Default is "default".
- memory_type: A string representing the memory type. Default is "recall".
- do_init: A boolean indicating whether to initialize. Default is False.
"""
self.user_name = user_name
self.unique_name = unique_name
self.memory_type = memory_type
self.do_init = do_init
self.current_memory = Memory(messages=[])
self.recall_memory = Memory(messages=[])
self.summary_memory = Memory(messages=[])
self.save_message_keys = [
'chat_index', 'role_name', 'role_type', 'role_prompt', 'input_query', 'origin_query',
'datetime', 'role_content', 'step_content', 'parsed_output', 'spec_parsed_output', 'parsed_output_list',
'task', 'db_docs', 'code_docs', 'search_docs', 'phase_name', 'chain_name', 'customed_kargs']
self.init_vb()
def init_vb(self):
"""
Initializes the vb.
"""
pass
def append(self, message: Message):
"""
Appends a message to the recall memory, current memory, and summary memory.
Args:
- message: An instance of Message class representing the message to be appended.
"""
pass
def extend(self, memory: Memory):
"""
Extends the recall memory, current memory, and summary memory.
Args:
- memory: An instance of Memory class representing the memory to be extended.
"""
pass
def save(self, save_dir: str = ""):
"""
Saves the memory to the specified directory.
Args:
- save_dir: A string representing the directory to save the memory. Default is KB_ROOT_PATH.
"""
pass
def load(self, load_dir: str = "") -> Memory:
"""
Loads the memory from the specified directory and returns a Memory instance.
Args:
- load_dir: A string representing the directory to load the memory from. Default is KB_ROOT_PATH.
Returns:
- An instance of Memory class representing the loaded memory.
"""
pass
def save_new_to_vs(self, messages: List[Message]):
"""
Saves new messages to the vector space.
Args:
- messages: A list of Message instances representing the messages to be saved.
- embed_model: A string representing the embedding model. Default is EMBEDDING_MODEL.
- embed_device: A string representing the embedding device. Default is EMBEDDING_DEVICE.
"""
pass
def save_to_vs(self, embed_model="", embed_device=""):
"""
Saves the memory to the vector space.
Args:
- embed_model: A string representing the embedding model. Default is EMBEDDING_MODEL.
- embed_device: A string representing the embedding device. Default is EMBEDDING_DEVICE.
"""
pass
def router_retrieval(self, text: str=None, datetime: str = None, n=5, top_k=5, retrieval_type: str = "embedding", **kwargs) -> List[Message]:
"""
Routes the retrieval based on the retrieval type.
Args:
- text: A string representing the text for retrieval. Default is None.
- datetime: A string representing the datetime for retrieval. Default is None.
- n: An integer representing the number of messages. Default is 5.
- top_k: An integer representing the top k messages. Default is 5.
- retrieval_type: A string representing the retrieval type. Default is "embedding".
- **kwargs: Additional keyword arguments for retrieval.
Returns:
- A list of Message instances representing the retrieved messages.
"""
pass
def embedding_retrieval(self, text: str, embed_model="", top_k=1, score_threshold=1.0, **kwargs) -> List[Message]:
"""
Retrieves messages based on embedding.
Args:
- text: A string representing the text for retrieval.
- embed_model: A string representing the embedding model. Default is EMBEDDING_MODEL.
- top_k: An integer representing the top k messages. Default is 1.
- score_threshold: A float representing the score threshold. Default is SCORE_THRESHOLD.
- **kwargs: Additional keyword arguments for retrieval.
Returns:
- A list of Message instances representing the retrieved messages.
"""
pass
def text_retrieval(self, text: str, **kwargs) -> List[Message]:
"""
Retrieves messages based on text.
Args:
- text: A string representing the text for retrieval.
- **kwargs: Additional keyword arguments for retrieval.
Returns:
- A list of Message instances representing the retrieved messages.
"""
pass
def datetime_retrieval(self, datetime: str, text: str = None, n: int = 5, **kwargs) -> List[Message]:
"""
Retrieves messages based on datetime.
Args:
- datetime: A string representing the datetime for retrieval.
- text: A string representing the text for retrieval. Default is None.
- n: An integer representing the number of messages. Default is 5.
- **kwargs: Additional keyword arguments for retrieval.
Returns:
- A list of Message instances representing the retrieved messages.
"""
pass
def recursive_summary(self, messages: List[Message], split_n: int = 20) -> List[Message]:
"""
Performs recursive summarization of messages.
Args:
- messages: A list of Message instances representing the messages to be summarized.
- split_n: An integer representing the split n. Default is 20.
Returns:
- A list of Message instances representing the summarized messages.
"""
pass
class LocalMemoryManager(BaseMemoryManager):
def __init__(
self,
embed_config: EmbedConfig,
llm_config: LLMConfig,
user_name: str = "default",
unique_name: str = "default",
memory_type: str = "recall",
do_init: bool = False,
kb_root_path: str = "",
):
self.user_name = user_name
self.unique_name = unique_name
self.memory_type = memory_type
self.do_init = do_init
self.kb_root_path = kb_root_path
self.embed_config: EmbedConfig = embed_config
self.llm_config: LLMConfig = llm_config
self.current_memory = Memory(messages=[])
self.recall_memory = Memory(messages=[])
self.summary_memory = Memory(messages=[])
self.save_message_keys = [
'chat_index', 'role_name', 'role_type', 'role_prompt', 'input_query', 'origin_query',
'datetime', 'role_content', 'step_content', 'parsed_output', 'spec_parsed_output', 'parsed_output_list',
'task', 'db_docs', 'code_docs', 'search_docs', 'phase_name', 'chain_name', 'customed_kargs']
self.init_vb()
def init_vb(self):
vb_name = f"{self.user_name}/{self.unique_name}/{self.memory_type}"
# default to recreate a new vb
table_init()
vb = KBServiceFactory.get_service_by_name(vb_name, self.embed_config, self.kb_root_path)
if vb:
status = vb.clear_vs()
if not self.do_init:
self.load(self.kb_root_path)
self.save_to_vs()
def append(self, message: Message):
self.recall_memory.append(message)
#
if message.role_type == "summary":
self.summary_memory.append(message)
else:
self.current_memory.append(message)
self.save(self.kb_root_path)
self.save_new_to_vs([message])
def extend(self, memory: Memory):
self.recall_memory.extend(memory)
self.current_memory.extend(self.recall_memory.filter_by_role_type(["summary"]))
self.summary_memory.extend(self.recall_memory.select_by_role_type(["summary"]))
self.save(self.kb_root_path)
self.save_new_to_vs(memory.messages)
def save(self, save_dir: str = "./"):
file_path = os.path.join(save_dir, f"{self.user_name}/{self.unique_name}/{self.memory_type}/converation.jsonl")
memory_messages = self.recall_memory.dict()
memory_messages = {k: [
{kkk: vvv for kkk, vvv in vv.items() if kkk in self.save_message_keys}
for vv in v ]
for k, v in memory_messages.items()
}
#
save_to_json_file(memory_messages, file_path)
def load(self, load_dir: str = "./") -> Memory:
file_path = os.path.join(load_dir, f"{self.user_name}/{self.unique_name}/{self.memory_type}/converation.jsonl")
if os.path.exists(file_path):
self.recall_memory = Memory(**read_json_file(file_path))
self.current_memory = Memory(messages=self.recall_memory.filter_by_role_type(["summary"]))
self.summary_memory = Memory(messages=self.recall_memory.select_by_role_type(["summary"]))
def save_new_to_vs(self, messages: List[Message]):
if self.embed_config:
vb_name = f"{self.user_name}/{self.unique_name}/{self.memory_type}"
# default to faiss, todo: add new vstype
vb = KBServiceFactory.get_service(vb_name, "faiss", self.embed_config, self.kb_root_path)
embeddings = load_embeddings_from_path(self.embed_config.embed_model_path, self.embed_config.model_device,)
messages = [
{k: v for k, v in m.dict().items() if k in self.save_message_keys}
for m in messages]
docs = [{"page_content": m["step_content"] or m["role_content"] or m["input_query"] or m["origin_query"], "metadata": m} for m in messages]
docs = [Document(**doc) for doc in docs]
vb.do_add_doc(docs, embeddings)
def save_to_vs(self):
vb_name = f"{self.user_name}/{self.unique_name}/{self.memory_type}"
# default to recreate a new vb
vb = KBServiceFactory.get_service_by_name(vb_name, self.embed_config, self.kb_root_path)
if vb:
status = vb.clear_vs()
# create_kb(vb_name, "faiss", embed_model)
# default to faiss, todo: add new vstype
vb = KBServiceFactory.get_service(vb_name, "faiss", self.embed_config, self.kb_root_path)
embeddings = load_embeddings_from_path(self.embed_config.embed_model_path, self.embed_config.model_device,)
messages = self.recall_memory.dict()
messages = [
{kkk: vvv for kkk, vvv in vv.items() if kkk in self.save_message_keys}
for k, v in messages.items() for vv in v]
docs = [{"page_content": m["step_content"] or m["role_content"] or m["input_query"] or m["origin_query"], "metadata": m} for m in messages]
docs = [Document(**doc) for doc in docs]
vb.do_add_doc(docs, embeddings)
# def load_from_vs(self, embed_model=EMBEDDING_MODEL) -> Memory:
# vb_name = f"{self.user_name}/{self.unique_name}/{self.memory_type}"
# create_kb(vb_name, "faiss", embed_model)
# # default to faiss, todo: add new vstype
# vb = KBServiceFactory.get_service(vb_name, "faiss", embed_model)
# docs = vb.get_all_documents()
# print(docs)
def router_retrieval(self, text: str=None, datetime: str = None, n=5, top_k=5, retrieval_type: str = "embedding", **kwargs) -> List[Message]:
retrieval_func_dict = {
"embedding": self.embedding_retrieval, "text": self.text_retrieval, "datetime": self.datetime_retrieval
}
# 确保提供了合法的检索类型
if retrieval_type not in retrieval_func_dict:
raise ValueError(f"Invalid retrieval_type: '{retrieval_type}'. Available types: {list(retrieval_func_dict.keys())}")
retrieval_func = retrieval_func_dict[retrieval_type]
#
params = locals()
params.pop("self")
params.pop("retrieval_type")
params.update(params.pop('kwargs', {}))
#
return retrieval_func(**params)
def embedding_retrieval(self, text: str, top_k=1, score_threshold=1.0, **kwargs) -> List[Message]:
if text is None: return []
vb_name = f"{self.user_name}/{self.unique_name}/{self.memory_type}"
vb = KBServiceFactory.get_service(vb_name, "faiss", self.embed_config, self.kb_root_path)
docs = vb.search_docs(text, top_k=top_k, score_threshold=score_threshold)
return [Message(**doc.metadata) for doc, score in docs]
def text_retrieval(self, text: str, **kwargs) -> List[Message]:
if text is None: return []
return self._text_retrieval_from_cache(self.recall_memory.messages, text, score_threshold=0.3, topK=5, **kwargs)
def datetime_retrieval(self, datetime: str, text: str = None, n: int = 5, **kwargs) -> List[Message]:
if datetime is None: return []
return self._datetime_retrieval_from_cache(self.recall_memory.messages, datetime, text, n, **kwargs)
def _text_retrieval_from_cache(self, messages: List[Message], text: str = None, score_threshold=0.3, topK=5, tag_topK=5, **kwargs) -> List[Message]:
keywords = extract_tags(text, topK=tag_topK)
matched_messages = []
for message in messages:
message_keywords = extract_tags(message.step_content or message.role_content or message.input_query, topK=tag_topK)
# calculate jaccard similarity
intersection = Counter(keywords) & Counter(message_keywords)
union = Counter(keywords) | Counter(message_keywords)
similarity = sum(intersection.values()) / sum(union.values())
if similarity >= score_threshold:
matched_messages.append((message, similarity))
matched_messages = sorted(matched_messages, key=lambda x:x[1])
return [m for m, s in matched_messages][:topK]
def _datetime_retrieval_from_cache(self, messages: List[Message], datetime: str, text: str = None, n: int = 5, **kwargs) -> List[Message]:
# select message by datetime
datetime_before, datetime_after = addMinutesToTime(datetime, n)
select_messages = [
message for message in messages
if datetime_before<=message.datetime<=datetime_after
]
return self._text_retrieval_from_cache(select_messages, text)
def recursive_summary(self, messages: List[Message], split_n: int = 20) -> List[Message]:
if len(messages) == 0:
return messages
newest_messages = messages[-split_n:]
summary_messages = messages[:len(messages)-split_n]
while (len(newest_messages) != 0) and (newest_messages[0].role_type != "user"):
message = newest_messages.pop(0)
summary_messages.append(message)
# summary
# model = getChatModel(temperature=0.2)
model = getChatModelFromConfig(self.llm_config)
summary_content = '\n\n'.join([
m.role_type + "\n" + "\n".join(([f"*{k}* {v}" for parsed_output in m.parsed_output_list for k, v in parsed_output.items() if k not in ['Action Status']]))
for m in summary_messages if m.role_type not in ["summary"]
])
summary_prompt = CONV_SUMMARY_PROMPT_SPEC.format(conversation=summary_content)
content = model.predict(summary_prompt)
summary_message = Message(
role_name="summaryer",
role_type="summary",
role_content=content,
step_content=content,
parsed_output_list=[],
customed_kargs={}
)
summary_message.parsed_output_list.append({"summary": content})
newest_messages.insert(0, summary_message)
return newest_messages

View File

@ -0,0 +1,267 @@
import re, traceback, uuid, copy, json, os
from loguru import logger
# from configs.server_config import SANDBOX_SERVER
# from configs.model_config import JUPYTER_WORK_PATH
from coagent.connector.schema import (
Memory, Role, Message, ActionStatus, CodeDoc, Doc, LogVerboseEnum
)
from coagent.connector.memory_manager import BaseMemoryManager
from coagent.tools import DDGSTool, DocRetrieval, CodeRetrieval
from coagent.sandbox import PyCodeBox, CodeBoxResponse
from coagent.llm_models.llm_config import LLMConfig, EmbedConfig
from .utils import parse_dict_to_dict, parse_text_to_dict
class MessageUtils:
def __init__(
self,
role: Role = None,
sandbox_server: dict = {},
jupyter_work_path: str = "./",
embed_config: EmbedConfig = None,
llm_config: LLMConfig = None,
kb_root_path: str = "",
log_verbose: str = "0"
) -> None:
self.role = role
self.sandbox_server = sandbox_server
self.jupyter_work_path = jupyter_work_path
self.embed_config = embed_config
self.llm_config = llm_config
self.kb_root_path = kb_root_path
self.codebox = PyCodeBox(
remote_url=self.sandbox_server.get("url", "http://127.0.0.1:5050"),
remote_ip=self.sandbox_server.get("host", "http://127.0.0.1"),
remote_port=self.sandbox_server.get("port", "5050"),
jupyter_work_path=jupyter_work_path,
token="mytoken",
do_code_exe=True,
do_remote=self.sandbox_server.get("do_remote", False),
do_check_net=False
)
self.log_verbose = os.environ.get("log_verbose", "0") or log_verbose
def inherit_extrainfo(self, input_message: Message, output_message: Message):
output_message.db_docs = input_message.db_docs
output_message.search_docs = input_message.search_docs
output_message.code_docs = input_message.code_docs
output_message.figures.update(input_message.figures)
output_message.origin_query = input_message.origin_query
output_message.code_engine_name = input_message.code_engine_name
output_message.doc_engine_name = input_message.doc_engine_name
output_message.search_engine_name = input_message.search_engine_name
output_message.top_k = input_message.top_k
output_message.score_threshold = input_message.score_threshold
output_message.cb_search_type = input_message.cb_search_type
output_message.do_doc_retrieval = input_message.do_doc_retrieval
output_message.do_code_retrieval = input_message.do_code_retrieval
output_message.do_tool_retrieval = input_message.do_tool_retrieval
#
output_message.tools = input_message.tools
output_message.agents = input_message.agents
# update customed_kargs, if exist, keep; else add
customed_kargs = copy.deepcopy(input_message.customed_kargs)
customed_kargs.update(output_message.customed_kargs)
output_message.customed_kargs = customed_kargs
return output_message
def inherit_baseparam(self, input_message: Message, output_message: Message):
# 只更新参数
output_message.doc_engine_name = input_message.doc_engine_name
output_message.search_engine_name = input_message.search_engine_name
output_message.top_k = input_message.top_k
output_message.score_threshold = input_message.score_threshold
output_message.cb_search_type = input_message.cb_search_type
output_message.do_doc_retrieval = input_message.do_doc_retrieval
output_message.do_code_retrieval = input_message.do_code_retrieval
output_message.do_tool_retrieval = input_message.do_tool_retrieval
#
output_message.tools = input_message.tools
output_message.agents = input_message.agents
# 存在bug导致相同key被覆盖
output_message.customed_kargs.update(input_message.customed_kargs)
return output_message
def get_extrainfo_step(self, message: Message, do_search, do_doc_retrieval, do_code_retrieval, do_tool_retrieval) -> Message:
''''''
if do_search:
message = self.get_search_retrieval(message)
if do_doc_retrieval:
message = self.get_doc_retrieval(message)
if do_code_retrieval:
message = self.get_code_retrieval(message)
if do_tool_retrieval:
message = self.get_tool_retrieval(message)
return message
def get_search_retrieval(self, message: Message,) -> Message:
SEARCH_ENGINES = {"duckduckgo": DDGSTool}
search_docs = []
for idx, doc in enumerate(SEARCH_ENGINES["duckduckgo"].run(message.role_content, 3)):
doc.update({"index": idx})
search_docs.append(Doc(**doc))
message.search_docs = search_docs
return message
def get_doc_retrieval(self, message: Message) -> Message:
query = message.role_content
knowledge_basename = message.doc_engine_name
top_k = message.top_k
score_threshold = message.score_threshold
if knowledge_basename:
docs = DocRetrieval.run(query, knowledge_basename, top_k, score_threshold, self.embed_config, self.kb_root_path)
message.db_docs = [Doc(**doc) for doc in docs]
return message
def get_code_retrieval(self, message: Message) -> Message:
query = message.input_query
code_engine_name = message.code_engine_name
history_node_list = message.history_node_list
code_docs = CodeRetrieval.run(code_engine_name, query, code_limit=message.top_k, history_node_list=history_node_list, search_type=message.cb_search_type,
llm_config=self.llm_config, embed_config=self.embed_config,)
message.code_docs = [CodeDoc(**doc) for doc in code_docs]
return message
def get_tool_retrieval(self, message: Message) -> Message:
return message
def step_router(self, message: Message, history: Memory = None, background: Memory = None, memory_manager: BaseMemoryManager=None) -> tuple[Message, ...]:
''''''
if LogVerboseEnum.ge(LogVerboseEnum.Log1Level, self.log_verbose):
logger.info(f"message.action_status: {message.action_status}")
observation_message = None
if message.action_status == ActionStatus.CODE_EXECUTING:
message, observation_message = self.code_step(message)
elif message.action_status == ActionStatus.TOOL_USING:
message, observation_message = self.tool_step(message)
elif message.action_status == ActionStatus.CODING2FILE:
self.save_code2file(message, self.jupyter_work_path)
elif message.action_status == ActionStatus.CODE_RETRIEVAL:
pass
elif message.action_status == ActionStatus.CODING:
pass
return message, observation_message
def code_step(self, message: Message) -> Message:
'''execute code'''
# logger.debug(f"message.role_content: {message.role_content}, message.code_content: {message.code_content}")
code_answer = self.codebox.chat('```python\n{}```'.format(message.code_content))
code_prompt = f"The return error after executing the above code is {code_answer.code_exe_response}need to recover.\n" \
if code_answer.code_exe_type == "error" else f"The return information after executing the above code is {code_answer.code_exe_response}.\n"
observation_message = Message(
role_name="observation",
role_type="function", #self.role.role_type,
role_content="",
step_content="",
input_query=message.code_content,
)
uid = str(uuid.uuid1())
if code_answer.code_exe_type == "image/png":
message.figures[uid] = code_answer.code_exe_response
message.code_answer = f"\n**Observation:**: The return figure name is {uid} after executing the above code.\n"
message.observation = f"\n**Observation:**: The return figure name is {uid} after executing the above code.\n"
message.step_content += f"\n**Observation:**: The return figure name is {uid} after executing the above code.\n"
# message.role_content += f"\n**Observation:**:执行上述代码后生成一张图片, 图片名为{uid}\n"
observation_message.role_content = f"\n**Observation:**: The return figure name is {uid} after executing the above code.\n"
observation_message.parsed_output = {"Observation": f"The return figure name is {uid} after executing the above code.\n"}
else:
message.code_answer = code_answer.code_exe_response
message.observation = code_answer.code_exe_response
message.step_content += f"\n**Observation:**: {code_prompt}\n"
# message.role_content += f"\n**Observation:**: {code_prompt}\n"
observation_message.role_content = f"\n**Observation:**: {code_prompt}\n"
observation_message.parsed_output = {"Observation": f"{code_prompt}\n"}
if LogVerboseEnum.ge(LogVerboseEnum.Log1Level, self.log_verbose):
logger.info(f"**Observation:** {message.action_status}, {message.observation}")
return message, observation_message
def tool_step(self, message: Message) -> Message:
'''execute tool'''
observation_message = Message(
role_name="observation",
role_type="function", #self.role.role_type,
role_content="\n**Observation:** there is no tool can execute\n",
step_content="",
input_query=str(message.tool_params),
tools=message.tools,
)
if LogVerboseEnum.ge(LogVerboseEnum.Log1Level, self.log_verbose):
logger.info(f"message: {message.action_status}, {message.tool_params}")
tool_names = [tool.name for tool in message.tools]
if message.tool_name not in tool_names:
message.tool_answer = "\n**Observation:** there is no tool can execute.\n"
message.observation = "\n**Observation:** there is no tool can execute.\n"
# message.role_content += f"\n**Observation:**: 不存在可以执行的tool\n"
message.step_content += f"\n**Observation:** there is no tool can execute.\n"
observation_message.role_content = f"\n**Observation:** there is no tool can execute.\n"
observation_message.parsed_output = {"Observation": "there is no tool can execute.\n"}
# logger.debug(message.tool_params)
for tool in message.tools:
if tool.name == message.tool_params.get("tool_name", ""):
tool_res = tool.func(**message.tool_params.get("tool_params", {}))
message.tool_answer = tool_res
message.observation = tool_res
# message.role_content += f"\n**Observation:**: {tool_res}\n"
message.step_content += f"\n**Observation:** {tool_res}.\n"
observation_message.role_content = f"\n**Observation:** {tool_res}.\n"
observation_message.parsed_output = {"Observation": f"{tool_res}.\n"}
break
if LogVerboseEnum.ge(LogVerboseEnum.Log1Level, self.log_verbose):
logger.info(f"**Observation:** {message.action_status}, {message.observation}")
return message, observation_message
def parser(self, message: Message) -> Message:
''''''
content = message.role_content
# parse start
parsed_dict = parse_text_to_dict(content)
spec_parsed_dict = parse_dict_to_dict(parsed_dict)
# select parse value
action_value = parsed_dict.get('Action Status')
if action_value:
action_value = action_value.lower()
code_content_value = spec_parsed_dict.get('code')
if action_value == 'tool_using':
tool_params_value = spec_parsed_dict.get('json')
else:
tool_params_value = None
# add parse value to message
message.action_status = action_value or "default"
message.code_content = code_content_value
message.tool_params = tool_params_value
message.parsed_output = parsed_dict
message.spec_parsed_output = spec_parsed_dict
return message
def save_code2file(self, message: Message, project_dir="./"):
filename = message.parsed_output.get("SaveFileName")
code = message.spec_parsed_output.get("code")
for k, v in {"&gt;": ">", "&ge;": ">=", "&lt;": "<", "&le;": "<="}.items():
code = code.replace(k, v)
file_path = os.path.join(project_dir, filename)
if not os.path.exists(file_path):
os.makedirs(os.path.dirname(file_path), exist_ok=True)
with open(file_path, "w") as f:
f.write(code)

View File

@ -0,0 +1,255 @@
from typing import List, Union, Dict, Tuple
import os
import json
import importlib
import copy
from loguru import logger
from coagent.connector.agents import BaseAgent
from coagent.connector.chains import BaseChain
from coagent.connector.schema import (
Memory, Task, Message, AgentConfig, ChainConfig, PhaseConfig, LogVerboseEnum,
CompletePhaseConfig,
load_chain_configs, load_phase_configs, load_role_configs
)
from coagent.connector.memory_manager import BaseMemoryManager, LocalMemoryManager
from coagent.connector.configs import AGETN_CONFIGS, CHAIN_CONFIGS, PHASE_CONFIGS
from coagent.connector.message_process import MessageUtils
from coagent.llm_models.llm_config import EmbedConfig, LLMConfig
from coagent.base_configs.env_config import JUPYTER_WORK_PATH, KB_ROOT_PATH
# from configs.model_config import JUPYTER_WORK_PATH, KB_ROOT_PATH
# from configs.server_config import SANDBOX_SERVER
role_configs = load_role_configs(AGETN_CONFIGS)
chain_configs = load_chain_configs(CHAIN_CONFIGS)
phase_configs = load_phase_configs(PHASE_CONFIGS)
CUR_DIR = os.path.dirname(os.path.abspath(__file__))
class BasePhase:
def __init__(
self,
phase_name: str,
phase_config: CompletePhaseConfig = None,
kb_root_path: str = KB_ROOT_PATH,
jupyter_work_path: str = JUPYTER_WORK_PATH,
sandbox_server: dict = {},
embed_config: EmbedConfig = EmbedConfig(),
llm_config: LLMConfig = LLMConfig(),
task: Task = None,
base_phase_config: Union[dict, str] = PHASE_CONFIGS,
base_chain_config: Union[dict, str] = CHAIN_CONFIGS,
base_role_config: Union[dict, str] = AGETN_CONFIGS,
log_verbose: str = "0"
) -> None:
#
self.phase_name = phase_name
self.do_summary = False
self.do_search = False
self.do_code_retrieval = False
self.do_doc_retrieval = False
self.do_tool_retrieval = False
# memory_pool dont have specific order
# self.memory_pool = Memory(messages=[])
self.embed_config = embed_config
self.llm_config = llm_config
self.sandbox_server = sandbox_server
self.jupyter_work_path = jupyter_work_path
self.kb_root_path = kb_root_path
self.log_verbose = max(os.environ.get("log_verbose", "0"), log_verbose)
self.message_utils = MessageUtils(None, sandbox_server, jupyter_work_path, embed_config, llm_config, kb_root_path, log_verbose)
self.global_memory = Memory(messages=[])
self.phase_memory: List[Memory] = []
# according phase name to init the phase contains
self.chains: List[BaseChain] = self.init_chains(
phase_name,
phase_config,
task=task,
memory=None,
base_phase_config = base_phase_config,
base_chain_config = base_chain_config,
base_role_config = base_role_config,
)
self.memory_manager: BaseMemoryManager = LocalMemoryManager(
unique_name=phase_name, do_init=True, kb_root_path = kb_root_path, embed_config=embed_config, llm_config=llm_config
)
self.conv_summary_agent = BaseAgent(
role=role_configs["conv_summary"].role,
prompt_config=role_configs["conv_summary"].prompt_config,
task = None, memory = None,
llm_config=self.llm_config,
embed_config=self.embed_config,
sandbox_server=sandbox_server,
jupyter_work_path=jupyter_work_path,
kb_root_path=kb_root_path
)
def astep(self, query: Message, history: Memory = None) -> Tuple[Message, Memory]:
self.memory_manager.append(query)
summary_message = None
chain_message = Memory(messages=[])
local_phase_memory = Memory(messages=[])
# do_search、do_doc_search、do_code_search
query = self.message_utils.get_extrainfo_step(query, self.do_search, self.do_doc_retrieval, self.do_code_retrieval, self.do_tool_retrieval)
query.parsed_output = query.parsed_output if query.parsed_output else {"origin_query": query.input_query}
query.parsed_output_list = query.parsed_output_list if query.parsed_output_list else [{"origin_query": query.input_query}]
input_message = copy.deepcopy(query)
self.global_memory.append(input_message)
local_phase_memory.append(input_message)
for chain in self.chains:
# chain can supply background and query to next chain
for output_message, local_chain_memory in chain.astep(input_message, history, background=chain_message, memory_manager=self.memory_manager):
# logger.debug(f"local_memory: {local_phase_memory + local_chain_memory}")
yield output_message, local_phase_memory + local_chain_memory
output_message = self.message_utils.inherit_extrainfo(input_message, output_message)
input_message = output_message
# logger.info(f"{chain.chainConfig.chain_name} phase_step: {output_message.role_content}")
# 这一段也有问题
self.global_memory.extend(local_chain_memory)
local_phase_memory.extend(local_chain_memory)
# whether to use summary_llm
if self.do_summary:
if LogVerboseEnum.ge(LogVerboseEnum.Log1Level, self.log_verbose):
logger.info(f"{self.conv_summary_agent.role.role_name} input global memory: {local_phase_memory.to_str_messages(content_key='step_content')}")
for summary_message in self.conv_summary_agent.astep(query, background=local_phase_memory, memory_manager=self.memory_manager):
pass
# summary_message = Message(**summary_message)
summary_message.role_name = chain.chainConfig.chain_name
summary_message = self.conv_summary_agent.message_utils.parser(summary_message)
summary_message = self.message_utils.inherit_extrainfo(output_message, summary_message)
chain_message.append(summary_message)
message = summary_message or output_message
yield message, local_phase_memory
# 由于不会存在多轮chain执行所以直接保留memory即可
for chain in self.chains:
self.phase_memory.append(chain.global_memory)
# TODOlocal_memory缺少添加summary的过程
message = summary_message or output_message
message.role_name = self.phase_name
yield message, local_phase_memory
def step(self, query: Message, history: Memory = None) -> Tuple[Message, Memory]:
for message, local_phase_memory in self.astep(query, history=history):
pass
return message, local_phase_memory
def pre_print(self, query, history: Memory = None) -> List[str]:
chain_message = Memory(messages=[])
for chain in self.chains:
chain.pre_print(query, history, background=chain_message, memory_manager=self.memory_manager)
def init_chains(self, phase_name: str, phase_config: CompletePhaseConfig, base_phase_config, base_chain_config,
base_role_config, task=None, memory=None) -> List[BaseChain]:
# load config
role_configs = load_role_configs(base_role_config)
chain_configs = load_chain_configs(base_chain_config)
phase_configs = load_phase_configs(base_phase_config)
chains = []
self.chain_module = importlib.import_module("coagent.connector.chains")
self.agent_module = importlib.import_module("coagent.connector.agents")
phase: PhaseConfig = phase_configs.get(phase_name)
# set phase
self.do_summary = phase.do_summary
self.do_search = phase.do_search
self.do_code_retrieval = phase.do_code_retrieval
self.do_doc_retrieval = phase.do_doc_retrieval
self.do_tool_retrieval = phase.do_tool_retrieval
logger.info(f"start to init the phase, the phase_name is {phase_name}, it contains these chains such as {phase.chains}")
for chain_name in phase.chains:
# logger.debug(f"{chain_configs.keys()}")
chain_config: ChainConfig = chain_configs[chain_name]
logger.info(f"start to init the chain, the chain_name is {chain_name}, it contains these agents such as {chain_config.agents}")
agents = []
for agent_name in chain_config.agents:
agent_config: AgentConfig = role_configs[agent_name]
llm_config = copy.deepcopy(self.llm_config)
llm_config.stop = agent_config.stop
baseAgent: BaseAgent = getattr(self.agent_module, agent_config.role.agent_type)
base_agent = baseAgent(
role=agent_config.role,
prompt_config = agent_config.prompt_config,
prompt_manager_type=agent_config.prompt_manager_type,
task = task,
memory = memory,
chat_turn=agent_config.chat_turn,
focus_agents=agent_config.focus_agents,
focus_message_keys=agent_config.focus_message_keys,
llm_config=llm_config,
embed_config=self.embed_config,
sandbox_server=self.sandbox_server,
jupyter_work_path=self.jupyter_work_path,
kb_root_path=self.kb_root_path,
log_verbose=self.log_verbose
)
if agent_config.role.agent_type == "SelectorAgent":
for group_agent_name in agent_config.group_agents:
group_agent_config = role_configs[group_agent_name]
llm_config = copy.deepcopy(self.llm_config)
llm_config.stop = group_agent_config.stop
baseAgent: BaseAgent = getattr(self.agent_module, group_agent_config.role.agent_type)
group_base_agent = baseAgent(
role=group_agent_config.role,
prompt_config = group_agent_config.prompt_config,
prompt_manager_type=agent_config.prompt_manager_type,
task = task,
memory = memory,
chat_turn=group_agent_config.chat_turn,
focus_agents=group_agent_config.focus_agents,
focus_message_keys=group_agent_config.focus_message_keys,
llm_config=llm_config,
embed_config=self.embed_config,
sandbox_server=self.sandbox_server,
jupyter_work_path=self.jupyter_work_path,
kb_root_path=self.kb_root_path,
log_verbose=self.log_verbose
)
base_agent.group_agents.append(group_base_agent)
agents.append(base_agent)
chain_instance = BaseChain(
agents, chain_config.chat_turn,
do_checker=chain_configs[chain_name].do_checker,
jupyter_work_path=self.jupyter_work_path,
sandbox_server=self.sandbox_server,
embed_config=self.embed_config,
llm_config=self.llm_config,
kb_root_path=self.kb_root_path,
log_verbose=self.log_verbose
)
chains.append(chain_instance)
return chains
def update(self) -> Memory:
pass
def get_memory(self, ) -> Memory:
return Memory.from_memory_list(
[chain.get_memory() for chain in self.chains]
)
def get_memory_str(self, do_all_memory=True, content_key="role_content") -> str:
memory = self.global_memory if do_all_memory else self.phase_memory
return "\n".join([": ".join(i) for i in memory.to_tuple_messages(content_key=content_key)])
def get_chains_memory(self, content_key="role_content") -> List[Tuple]:
return [memory.to_tuple_messages(content_key=content_key) for memory in self.phase_memory]
def get_chains_memory_str(self, content_key="role_content") -> str:
return "************".join([f"{chain.chainConfig.chain_name}\n" + chain.get_memory_str(content_key=content_key) for chain in self.chains])

View File

@ -0,0 +1,350 @@
from coagent.connector.schema import Memory, Message
import random
from textwrap import dedent
import copy
from loguru import logger
from coagent.connector.utils import extract_section, parse_section
class PromptManager:
def __init__(self, role_prompt="", prompt_config=None, monitored_agents=[], monitored_fields=[]):
self.role_prompt = role_prompt
self.monitored_agents = monitored_agents
self.monitored_fields = monitored_fields
self.field_handlers = {}
self.context_handlers = {}
self.field_order = [] # 用于普通字段的顺序
self.context_order = [] # 单独维护上下文字段的顺序
self.field_descriptions = {}
self.omit_if_empty_flags = {}
self.context_title = "### Context Data\n\n"
self.prompt_config = prompt_config
if self.prompt_config:
self.register_fields_from_config()
def register_field(self, field_name, function=None, title=None, description=None, is_context=True, omit_if_empty=True):
"""
注册一个新的字段及其处理函数
Args:
field_name (str): 字段名称
function (callable): 处理字段数据的函数
title (str, optional): 字段的自定义标题可选
description (str, optional): 字段的描述可选可以是几句话
is_context (bool, optional): 指示该字段是否为上下文字段
omit_if_empty (bool, optional): 如果数据为空是否省略该字段
"""
if not function:
function = self.handle_custom_data
# Register the handler function based on context flag
if is_context:
self.context_handlers[field_name] = function
else:
self.field_handlers[field_name] = function
# Store the custom title if provided and adjust the title prefix based on context
title_prefix = "####" if is_context else "###"
if title is not None:
self.field_descriptions[field_name] = f"{title_prefix} {title}\n\n"
elif description is not None:
# If title is not provided but description is, use description as title
self.field_descriptions[field_name] = f"{title_prefix} {field_name.replace('_', ' ').title()}\n\n{description}\n\n"
else:
# If neither title nor description is provided, use the field name as title
self.field_descriptions[field_name] = f"{title_prefix} {field_name.replace('_', ' ').title()}\n\n"
# Store the omit_if_empty flag for this field
self.omit_if_empty_flags[field_name] = omit_if_empty
if is_context and field_name != 'context_placeholder':
self.context_handlers[field_name] = function
self.context_order.append(field_name)
else:
self.field_handlers[field_name] = function
self.field_order.append(field_name)
def generate_full_prompt(self, **kwargs):
full_prompt = []
context_prompts = [] # 用于收集上下文内容
is_pre_print = kwargs.get("is_pre_print", False) # 用于强制打印所有prompt 字段信息,不管有没有空
# 先处理上下文字段
for field_name in self.context_order:
handler = self.context_handlers[field_name]
processed_prompt = handler(**kwargs)
# Check if the field should be omitted when empty
if self.omit_if_empty_flags.get(field_name, False) and not processed_prompt and not is_pre_print:
continue # Skip this field
title_or_description = self.field_descriptions.get(field_name, f"#### {field_name.replace('_', ' ').title()}\n\n")
context_prompts.append(title_or_description + processed_prompt + '\n\n')
# 处理普通字段,同时查找 context_placeholder 的位置
for field_name in self.field_order:
if field_name == 'context_placeholder':
# 在 context_placeholder 的位置插入上下文数据
full_prompt.append(self.context_title) # 添加上下文部分的大标题
full_prompt.extend(context_prompts) # 添加收集的上下文内容
else:
handler = self.field_handlers[field_name]
processed_prompt = handler(**kwargs)
# Check if the field should be omitted when empty
if self.omit_if_empty_flags.get(field_name, False) and not processed_prompt and not is_pre_print:
continue # Skip this field
title_or_description = self.field_descriptions.get(field_name, f"### {field_name.replace('_', ' ').title()}\n\n")
full_prompt.append(title_or_description + processed_prompt + '\n\n')
# 返回完整的提示,移除尾部的空行
return ''.join(full_prompt).rstrip('\n')
def pre_print(self, **kwargs):
kwargs.update({"is_pre_print": True})
prompt = self.generate_full_prompt(**kwargs)
input_keys = parse_section(self.role_prompt, 'Response Output Format')
llm_predict = "\n".join([f"**{k}:**" for k in input_keys])
return prompt + "\n\n" + "#"*19 + "\n<<<<LLM PREDICT>>>>\n" + "#"*19 + f"\n\n{llm_predict}\n"
def handle_custom_data(self, **kwargs):
return ""
def handle_tool_data(self, **kwargs):
if 'previous_agent_message' not in kwargs:
return ""
previous_agent_message = kwargs.get('previous_agent_message')
tools = previous_agent_message.tools
if not tools:
return ""
tool_strings = []
for tool in tools:
args_schema = str(tool.args)
tool_strings.append(f"{tool.name}: {tool.description}, args: {args_schema}")
formatted_tools = "\n".join(tool_strings)
tool_names = ", ".join([tool.name for tool in tools])
tool_prompt = dedent(f"""
Below is a list of tools that are available for your use:
{formatted_tools}
valid "tool_name" value is:
{tool_names}
""")
return tool_prompt
def handle_agent_data(self, **kwargs):
if 'agents' not in kwargs:
return ""
agents = kwargs.get('agents')
random.shuffle(agents)
agent_names = ", ".join([f'{agent.role.role_name}' for agent in agents])
agent_descs = []
for agent in agents:
role_desc = agent.role.role_prompt.split("####")[1]
while "\n\n" in role_desc:
role_desc = role_desc.replace("\n\n", "\n")
role_desc = role_desc.replace("\n", ",")
agent_descs.append(f'"role name: {agent.role.role_name}\nrole description: {role_desc}"')
agents = "\n".join(agent_descs)
agent_prompt = f'''
Please ensure your selection is one of the listed roles. Available roles for selection:
{agents}
Please ensure select the Role from agent names, such as {agent_names}'''
return dedent(agent_prompt)
def handle_doc_info(self, **kwargs) -> str:
if 'previous_agent_message' not in kwargs:
return ""
previous_agent_message: Message = kwargs.get('previous_agent_message')
db_docs = previous_agent_message.db_docs
search_docs = previous_agent_message.search_docs
code_cocs = previous_agent_message.code_docs
doc_infos = "\n".join([doc.get_snippet() for doc in db_docs] + [doc.get_snippet() for doc in search_docs] +
[doc.get_code() for doc in code_cocs])
return doc_infos
def handle_session_records(self, **kwargs) -> str:
memory_pool: Memory = kwargs.get('memory_pool', Memory(messages=[]))
memory_pool = self.select_memory_by_agent_name(memory_pool)
memory_pool = self.select_memory_by_parsed_key(memory_pool)
return memory_pool.to_str_messages(content_key="parsed_output_list", with_tag=True)
def handle_current_plan(self, **kwargs) -> str:
if 'previous_agent_message' not in kwargs:
return ""
previous_agent_message = kwargs['previous_agent_message']
return previous_agent_message.parsed_output.get("CURRENT_STEP", "")
def handle_agent_profile(self, **kwargs) -> str:
return extract_section(self.role_prompt, 'Agent Profile')
def handle_output_format(self, **kwargs) -> str:
return extract_section(self.role_prompt, 'Response Output Format')
def handle_response(self, **kwargs) -> str:
if 'react_memory' not in kwargs:
return ""
react_memory = kwargs.get('react_memory', Memory(messages=[]))
if react_memory is None:
return ""
return "\n".join(["\n".join([f"**{k}:**\n{v}" for k,v in _dict.items()]) for _dict in react_memory.get_parserd_output()])
def handle_task_records(self, **kwargs) -> str:
if 'task_memory' not in kwargs:
return ""
task_memory: Memory = kwargs.get('task_memory', Memory(messages=[]))
if task_memory is None:
return ""
return "\n".join(["\n".join([f"**{k}:**\n{v}" for k,v in _dict.items() if k not in ["CURRENT_STEP"]]) for _dict in task_memory.get_parserd_output()])
def handle_previous_message(self, message: Message) -> str:
pass
def handle_message_by_role_name(self, message: Message) -> str:
pass
def handle_message_by_role_type(self, message: Message) -> str:
pass
def handle_current_agent_react_message(self, message: Message) -> str:
pass
def extract_codedoc_info_for_prompt(self, message: Message) -> str:
code_docs = message.code_docs
doc_infos = "\n".join([doc.get_code() for doc in code_docs])
return doc_infos
def select_memory_by_parsed_key(self, memory: Memory) -> Memory:
return Memory(
messages=[self.select_message_by_parsed_key(message) for message in memory.messages
if self.select_message_by_parsed_key(message) is not None]
)
def select_memory_by_agent_name(self, memory: Memory) -> Memory:
return Memory(
messages=[self.select_message_by_agent_name(message) for message in memory.messages
if self.select_message_by_agent_name(message) is not None]
)
def select_message_by_agent_name(self, message: Message) -> Message:
# assume we focus all agents
if self.monitored_agents == []:
return message
return None if message is None or message.role_name not in self.monitored_agents else self.select_message_by_parsed_key(message)
def select_message_by_parsed_key(self, message: Message) -> Message:
# assume we focus all key contents
if message is None:
return message
if self.monitored_fields == []:
return message
message_c = copy.deepcopy(message)
message_c.parsed_output = {k: v for k,v in message_c.parsed_output.items() if k in self.monitored_fields}
message_c.parsed_output_list = [{k: v for k,v in parsed_output.items() if k in self.monitored_fields} for parsed_output in message_c.parsed_output_list]
return message_c
def get_memory(self, content_key="role_content"):
return self.memory.to_tuple_messages(content_key="step_content")
def get_memory_str(self, content_key="role_content"):
return "\n".join([": ".join(i) for i in self.memory.to_tuple_messages(content_key="step_content")])
def register_fields_from_config(self):
for prompt_field in self.prompt_config:
function_name = prompt_field.function_name
# 检查function_name是否是self的一个方法
if function_name and hasattr(self, function_name):
function = getattr(self, function_name)
else:
function = self.handle_custom_data
self.register_field(prompt_field.field_name,
function=function,
title=prompt_field.title,
description=prompt_field.description,
is_context=prompt_field.is_context,
omit_if_empty=prompt_field.omit_if_empty)
def register_standard_fields(self):
self.register_field('agent_profile', function=self.handle_agent_profile, is_context=False)
self.register_field('tool_information', function=self.handle_tool_data, is_context=False)
self.register_field('context_placeholder', is_context=True) # 用于标记上下文数据部分的位置
self.register_field('reference_documents', function=self.handle_doc_info, is_context=True)
self.register_field('session_records', function=self.handle_session_records, is_context=True)
self.register_field('output_format', function=self.handle_output_format, title='Response Output Format', is_context=False)
self.register_field('response', function=self.handle_response, is_context=False, omit_if_empty=False)
def register_executor_fields(self):
self.register_field('agent_profile', function=self.handle_agent_profile, is_context=False)
self.register_field('tool_information', function=self.handle_tool_data, is_context=False)
self.register_field('context_placeholder', is_context=True) # 用于标记上下文数据部分的位置
self.register_field('reference_documents', function=self.handle_doc_info, is_context=True)
self.register_field('session_records', function=self.handle_session_records, is_context=True)
self.register_field('current_plan', function=self.handle_current_plan, is_context=True)
self.register_field('output_format', function=self.handle_output_format, title='Response Output Format', is_context=False)
self.register_field('response', function=self.handle_response, is_context=False, omit_if_empty=False)
def register_fields_from_dict(self, fields_dict):
# 使用字典注册字段的函数
for field_name, field_config in fields_dict.items():
function_name = field_config.get('function', None)
title = field_config.get('title', None)
description = field_config.get('description', None)
is_context = field_config.get('is_context', True)
omit_if_empty = field_config.get('omit_if_empty', True)
# 检查function_name是否是self的一个方法
if function_name and hasattr(self, function_name):
function = getattr(self, function_name)
else:
function = self.handle_custom_data
# 调用已存在的register_field方法注册字段
self.register_field(field_name, function=function, title=title, description=description, is_context=is_context, omit_if_empty=omit_if_empty)
def main():
manager = PromptManager()
manager.register_standard_fields()
manager.register_field('agents_work_progress', title=f"Agents' Work Progress", is_context=True)
# 创建数据字典
data_dict = {
"agent_profile": "这是代理配置文件...",
# "tool_list": "这是工具列表...",
"reference_documents": "这是参考文档...",
"session_records": "这是会话记录...",
"agents_work_progress": "这是代理工作进展...",
"output_format": "这是预期的输出格式...",
# "response": "这是生成或继续回应的指令...",
"response": "",
"test": 'xxxxx'
}
# 组合完整的提示
full_prompt = manager.generate_full_prompt(data_dict)
print(full_prompt)
if __name__ == "__main__":
main()

View File

@ -3,7 +3,7 @@ from .general_schema import *
from .message import Message
__all__ = [
"Memory", "ActionStatus", "Doc", "CodeDoc", "Task",
"Memory", "ActionStatus", "Doc", "CodeDoc", "Task", "LogVerboseEnum",
"Env", "Role", "ChainConfig", "AgentConfig", "PhaseConfig", "Message",
"load_role_configs", "load_chain_configs", "load_phase_configs"
]

View File

@ -1,5 +1,5 @@
from pydantic import BaseModel
from typing import List, Dict
from typing import List, Dict, Optional, Union
from enum import Enum
import re
import json
@ -11,7 +11,7 @@ class ActionStatus(Enum):
DEFAUILT = "default"
FINISHED = "finished"
STOPED = "stoped"
STOPPED = "stopped"
CONTINUED = "continued"
TOOL_USING = "tool_using"
@ -38,8 +38,8 @@ class FinishedAction(Action):
action_name: str = ActionStatus.FINISHED
description: str = "provide the final answer to the original query to break the chain answer"
class StopedAction(Action):
action_name: str = ActionStatus.STOPED
class StoppedAction(Action):
action_name: str = ActionStatus.STOPPED
description: str = "provide the final answer to the original query to break the agent answer"
class ContinuedAction(Action):
@ -86,6 +86,7 @@ class RoleTypeEnums(Enum):
ASSISTANT = "assistant"
FUNCTION = "function"
OBSERVATION = "observation"
SUMMARY = "summary"
def __eq__(self, other):
if isinstance(other, str):
@ -167,15 +168,43 @@ class CodeDoc(BaseModel):
return f"""出处 [{self.index + 1}] \n\n来源 ({self.related_nodes}) \n\n内容 {self.code}\n\n"""
class LogVerboseEnum(Enum):
Log0Level = "0" # don't print log
Log1Level = "1" # print level-1 log
Log2Level = "2" # print level-2 log
Log3Level = "3" # print level-3 log
def __eq__(self, other):
if isinstance(other, str):
return self.value.lower() == other.lower()
if isinstance(other, LogVerboseEnum):
return self.value == other.value
return False
def __ge__(self, other):
if isinstance(other, LogVerboseEnum):
return int(self.value) >= int(other.value)
if isinstance(other, str):
return int(self.value) >= int(other)
return NotImplemented
def __le__(self, other):
if isinstance(other, LogVerboseEnum):
return int(self.value) <= int(other.value)
if isinstance(other, str):
return int(self.value) <= int(other)
return NotImplemented
@classmethod
def ge(self, enum_value: 'LogVerboseEnum', other: Union[str, 'LogVerboseEnum']):
return enum_value <= other
class Task(BaseModel):
task_type: str
task_name: str
task_desc: str
task_prompt: str
# def __init__(self, task_type, task_name, task_desc) -> None:
# self.task_type = task_type
# self.task_name = task_name
# self.task_desc = task_desc
class Env(BaseModel):
env_type: str
@ -192,30 +221,32 @@ class Role(BaseModel):
template_prompt: str = ""
class ChainConfig(BaseModel):
chain_name: str
chain_type: str
agents: List[str]
do_checker: bool = False
chat_turn: int = 1
clear_structure: bool = False
brainstorming: bool = False
gui_design: bool = True
git_management: bool = False
self_improve: bool = False
class PromptField(BaseModel):
field_name: str # 假设这是一个函数类型,您可以根据需要更改
function_name: str
title: Optional[str] = None
description: Optional[str] = None
is_context: Optional[bool] = True
omit_if_empty: Optional[bool] = True
class AgentConfig(BaseModel):
role: Role
stop: str = None
prompt_config: List[PromptField]
prompt_manager_type: str = "PromptManager"
chat_turn: int = 1
do_search: bool = False
do_doc_retrieval: bool = False
do_tool_retrieval: bool = False
focus_agents: List = []
focus_message_keys: List = []
group_agents: List = []
stop: str = ""
class PhaseConfig(BaseModel):
@ -229,13 +260,32 @@ class PhaseConfig(BaseModel):
do_tool_retrieval: bool = False
class CompleteChainConfig(BaseModel):
chain_name: str
chain_type: str
agents: Dict[str, AgentConfig]
do_checker: bool = False
chat_turn: int = 1
class CompletePhaseConfig(BaseModel):
phase_name: str
phase_type: str
chains: Dict[str, CompleteChainConfig]
do_summary: bool = False
do_search: bool = False
do_doc_retrieval: bool = False
do_code_retrieval: bool = False
do_tool_retrieval: bool = False
def load_role_configs(config) -> Dict[str, AgentConfig]:
if isinstance(config, str):
with open(config, 'r', encoding="utf8") as file:
configs = json.load(file)
else:
configs = config
# logger.debug(configs)
return {name: AgentConfig(**v) for name, v in configs.items()}
@ -255,3 +305,5 @@ def load_phase_configs(config) -> Dict[str, PhaseConfig]:
else:
configs = config
return {name: PhaseConfig(**v) for name, v in configs.items()}
# AgentConfig.update_forward_refs()

View File

@ -0,0 +1,158 @@
from pydantic import BaseModel
from typing import List, Union, Dict
from loguru import logger
from .message import Message
from coagent.utils.common_utils import (
save_to_jsonl_file, save_to_json_file, read_json_file, read_jsonl_file
)
class Memory(BaseModel):
messages: List[Message] = []
# def __init__(self, messages: List[Message] = []):
# self.messages = messages
def append(self, message: Message):
self.messages.append(message)
def extend(self, memory: 'Memory'):
self.messages.extend(memory.messages)
def update(self, role_name: str, role_type: str, role_content: str):
self.messages.append(Message(role_name, role_type, role_content, role_content))
def clear(self, ):
self.messages = []
def delete(self, ):
pass
def get_messages(self, k=0) -> List[Message]:
"""Return the most recent k memories, return all when k=0"""
return self.messages[-k:]
def split_by_role_type(self) -> List[Dict[str, 'Memory']]:
"""
Split messages into rounds of conversation based on role_type.
Each round consists of consecutive messages of the same role_type.
User messages form a single round, while assistant and function messages are combined into a single round.
Each round is represented by a dict with 'role' and 'memory' keys, with assistant and function messages
labeled as 'assistant'.
"""
rounds = []
current_memory = Memory()
current_role = None
logger.debug(len(self.messages))
for msg in self.messages:
# Determine the message's role, considering 'function' as 'assistant'
message_role = 'assistant' if msg.role_type in ['assistant', 'function'] else 'user'
# If the current memory is empty or the current message is of the same role_type as current_role, add to current memory
if not current_memory.messages or current_role == message_role:
current_memory.append(msg)
else:
# Finish the current memory and start a new one
rounds.append({'role': current_role, 'memory': current_memory})
current_memory = Memory()
current_memory.append(msg)
# Update the current_role, considering 'function' as 'assistant'
current_role = message_role
# Don't forget to add the last memory if it exists
if current_memory.messages:
rounds.append({'role': current_role, 'memory': current_memory})
logger.debug(rounds)
return rounds
def format_rounds_to_html(self) -> str:
formatted_html_str = ""
rounds = self.split_by_role_type()
for round in rounds:
role = round['role']
memory = round['memory']
# 转换当前round的Memory为字符串
messages_str = memory.to_str_messages()
# 根据角色类型添加相应的HTML标签
if role == 'user':
formatted_html_str += f"<user-message>\n{messages_str}\n</user-message>\n"
else: # 对于'assistant'和'function'角色,我们将其视为'assistant'
formatted_html_str += f"<assistant-message>\n{messages_str}\n</assistant-message>\n"
return formatted_html_str
def filter_by_role_type(self, role_types: List[str]) -> List[Message]:
# Filter messages based on role types
return [message for message in self.messages if message.role_type not in role_types]
def select_by_role_type(self, role_types: List[str]) -> List[Message]:
# Select messages based on role types
return [message for message in self.messages if message.role_type in role_types]
def to_tuple_messages(self, return_all: bool = True, content_key="role_content", filter_roles=[]):
# Convert messages to tuples based on parameters
# logger.debug(f"{[message.to_tuple_message(return_all, content_key) for message in self.messages ]}")
return [
message.to_tuple_message(return_all, content_key) for message in self.messages
if message.role_name not in filter_roles
]
def to_dict_messages(self, filter_roles=[]):
# Convert messages to dictionaries based on filter roles
return [
message.to_dict_message() for message in self.messages
if message.role_name not in filter_roles
]
def to_str_messages(self, return_all: bool = True, content_key="role_content", filter_roles=[], with_tag=False):
# Convert messages to strings based on parameters
# for message in self.messages:
# logger.debug(f"{message.role_name}: {message.to_str_content(return_all, content_key, with_tag=with_tag)}")
# logger.debug(f"{[message.to_tuple_message(return_all, content_key) for message in self.messages ]}")
return "\n\n".join([message.to_str_content(return_all, content_key, with_tag=with_tag) for message in self.messages
if message.role_name not in filter_roles
])
def get_parserd_output(self, ):
return [message.parsed_output for message in self.messages]
def get_parserd_output_list(self, ):
# for message in self.messages:
# logger.debug(f"{message.role_name}: {message.parsed_output_list}")
# return [parsed_output for message in self.messages for parsed_output in message.parsed_output_list[1:]]
return [parsed_output for message in self.messages for parsed_output in message.parsed_output_list]
def get_rolenames(self, ):
''''''
return [message.role_name for message in self.messages]
@classmethod
def from_memory_list(cls, memorys: List['Memory']) -> 'Memory':
return cls(messages=[message for memory in memorys for message in memory.get_messages()])
def __len__(self, ):
return len(self.messages)
def __str__(self) -> str:
return "\n".join([":".join(i) for i in self.to_tuple_messages()])
def __add__(self, other: Union[Message, 'Memory']) -> 'Memory':
if isinstance(other, Message):
return Memory(messages=self.messages + [other])
elif isinstance(other, Memory):
return Memory(messages=self.messages + other.messages)
else:
raise ValueError(f"cant add unspecified type like as {type(other)}")

View File

@ -1,6 +1,7 @@
from pydantic import BaseModel
from pydantic import BaseModel, root_validator
from loguru import logger
from coagent.utils.common_utils import getCurrentDatetime
from .general_schema import *
@ -11,6 +12,7 @@ class Message(BaseModel):
role_prompt: str = None
input_query: str = None
origin_query: str = None
datetime: str = getCurrentDatetime()
# llm output
role_content: str = None
@ -27,7 +29,7 @@ class Message(BaseModel):
parsed_output_list: List[Dict] = []
# llm\tool\code executre information
action_status: str = ActionStatus.DEFAUILT
action_status: str = "default"
agent_index: int = None
code_answer: str = None
tool_answer: str = None
@ -59,6 +61,27 @@ class Message(BaseModel):
# user's customed kargs for init or end action
customed_kargs: dict = {}
@root_validator(pre=True)
def check_card_number_omitted(cls, values):
input_query = values.get("input_query")
origin_query = values.get("origin_query")
role_content = values.get("role_content")
if input_query is None:
values["input_query"] = origin_query or role_content
if role_content is None:
values["role_content"] = origin_query
return values
# pydantic>=2.0
# @model_validator(mode='after')
# def check_passwords_match(self) -> 'Message':
# if self.input_query is None:
# self.input_query = self.origin_query or self.role_content
# if self.role_content is None:
# self.role_content = self.origin_query
# return self
def to_tuple_message(self, return_all: bool = True, content_key="role_content"):
role_content = self.to_str_content(False, content_key)
if return_all:
@ -66,29 +89,28 @@ class Message(BaseModel):
else:
return (role_content)
def to_dict_message(self, return_all: bool = True, content_key="role_content"):
role_content = self.to_str_content(False, content_key)
if return_all:
return {"role": self.role_name, "content": role_content}
else:
return vars(self)
def to_dict_message(self, ):
return vars(self)
def to_str_content(self, return_all: bool = True, content_key="role_content"):
def to_str_content(self, return_all: bool = True, content_key="role_content", with_tag=False):
if content_key == "role_content":
role_content = self.role_content or self.input_query
elif content_key == "step_content":
role_content = self.step_content or self.role_content or self.input_query
elif content_key == "parsed_output":
role_content = "\n".join([f"**{k}:** {v}" for k, v in self.parsed_output.items()])
elif content_key == "parsed_output_list":
role_content = "\n".join([f"**{k}:** {v}" for po in self.parsed_output_list for k,v in po.items()])
else:
role_content = self.role_content or self.input_query
if return_all:
return f"{self.role_name}: {role_content}"
if with_tag:
start_tag = f"<{self.role_type}-{self.role_name}-message>"
end_tag = f"</{self.role_type}-{self.role_name}-message>"
return f"{start_tag}\n{role_content}\n{end_tag}"
else:
return role_content
def is_system_role(self,):
return self.role_type == "system"
def __str__(self) -> str:
# key_str = '\n'.join([k for k, v in vars(self).items()])
# logger.debug(f"{key_str}")

117
coagent/connector/utils.py Normal file
View File

@ -0,0 +1,117 @@
import re, copy, json
from loguru import logger
def extract_section(text, section_name):
# Define a pattern to extract the named section along with its content
section_pattern = rf'#### {section_name}\n(.*?)(?=####|$)'
# Find the specific section content
section_content = re.search(section_pattern, text, re.DOTALL)
if section_content:
# If the section is found, extract the content and strip the leading/trailing whitespace
# This will also remove leading/trailing newlines
content = section_content.group(1).strip()
# Return the cleaned content
return content
else:
# If the section is not found, return an empty string
return ""
def parse_section(text, section_name):
# Define a pattern to extract the named section along with its content
section_pattern = rf'#### {section_name}\n(.*?)(?=####|$)'
# Find the specific section content
section_content = re.search(section_pattern, text, re.DOTALL)
if section_content:
# If the section is found, extract the content
content = section_content.group(1)
# Define a pattern to find segments that follow the format **xx:**
segments_pattern = r'\*\*([^*]+):\*\*'
# Use findall method to extract all matches in the section content
segments = re.findall(segments_pattern, content)
return segments
else:
# If the section is not found, return an empty list
return []
def parse_text_to_dict(text):
# Define a regular expression pattern to capture the key and value
main_pattern = r"\*\*(.+?):\*\*\s*(.*?)\s*(?=\*\*|$)"
list_pattern = r'```python\n(.*?)```'
plan_pattern = r'\[\s*.*?\s*\]'
# Use re.findall to find all main matches in the text
main_matches = re.findall(main_pattern, text, re.DOTALL)
# Convert main matches to a dictionary
parsed_dict = {key.strip(): value.strip() for key, value in main_matches}
for k, v in parsed_dict.items():
for pattern in [list_pattern, plan_pattern]:
if "PLAN" != k: continue
v = v.replace("```list", "```python")
match_value = re.search(pattern, v, re.DOTALL)
if match_value:
# Add the code block to the dictionary
parsed_dict[k] = eval(match_value.group(1).strip())
break
return parsed_dict
def parse_dict_to_dict(parsed_dict) -> dict:
code_pattern = r'```python\n(.*?)```'
tool_pattern = r'```json\n(.*?)```'
pattern_dict = {"code": code_pattern, "json": tool_pattern}
spec_parsed_dict = copy.deepcopy(parsed_dict)
for key, pattern in pattern_dict.items():
for k, text in parsed_dict.items():
# Search for the code block
if not isinstance(text, str): continue
_match = re.search(pattern, text, re.DOTALL)
if _match:
# Add the code block to the dictionary
try:
spec_parsed_dict[key] = json.loads(_match.group(1).strip())
except:
spec_parsed_dict[key] = _match.group(1).strip()
break
return spec_parsed_dict
def prompt_cost(model_type: str, num_prompt_tokens: float, num_completion_tokens: float):
input_cost_map = {
"gpt-3.5-turbo": 0.0015,
"gpt-3.5-turbo-16k": 0.003,
"gpt-3.5-turbo-0613": 0.0015,
"gpt-3.5-turbo-16k-0613": 0.003,
"gpt-4": 0.03,
"gpt-4-0613": 0.03,
"gpt-4-32k": 0.06,
}
output_cost_map = {
"gpt-3.5-turbo": 0.002,
"gpt-3.5-turbo-16k": 0.004,
"gpt-3.5-turbo-0613": 0.002,
"gpt-3.5-turbo-16k-0613": 0.004,
"gpt-4": 0.06,
"gpt-4-0613": 0.06,
"gpt-4-32k": 0.12,
}
if model_type not in input_cost_map or model_type not in output_cost_map:
return -1
return num_prompt_tokens * input_cost_map[model_type] / 1000.0 + num_completion_tokens * output_cost_map[model_type] / 1000.0

View File

@ -224,6 +224,7 @@ class NebulaHandler:
res = {'vertices': -1, 'edges': -1}
stats_res_dict = self.result_to_dict(stats_res)
logger.info(stats_res_dict)
for idx in range(len(stats_res_dict['Type'])):
t = stats_res_dict['Type'][idx].as_string()
name = stats_res_dict['Name'][idx].as_string()
@ -264,7 +265,3 @@ class NebulaHandler:

View File

@ -6,7 +6,7 @@ from langchain.docstore.document import Document
from langchain.document_loaders.base import BaseLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter, TextSplitter
from dev_opsgpt.utils.common_utils import read_json_file
from coagent.utils.common_utils import read_json_file
class JSONLoader(BaseLoader):

View File

@ -6,7 +6,7 @@ from langchain.docstore.document import Document
from langchain.document_loaders.base import BaseLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter, TextSplitter
from dev_opsgpt.utils.common_utils import read_jsonl_file
from coagent.utils.common_utils import read_jsonl_file
class JSONLLoader(BaseLoader):

View File

@ -602,7 +602,6 @@ class FAISS(VectorStore):
faiss = FAISS.from_texts(texts, embeddings)
"""
from loguru import logger
logger.debug(f"texts: {len(texts)}")
embeddings = embedding.embed_documents(texts)
return cls.__from(
texts,

View File

@ -7,12 +7,17 @@
'''
from loguru import logger
from configs.model_config import EMBEDDING_MODEL
from dev_opsgpt.embeddings.openai_embedding import OpenAIEmbedding
from dev_opsgpt.embeddings.huggingface_embedding import HFEmbedding
# from configs.model_config import EMBEDDING_MODEL
from coagent.embeddings.openai_embedding import OpenAIEmbedding
from coagent.embeddings.huggingface_embedding import HFEmbedding
def get_embedding(engine: str, text_list: list):
def get_embedding(
engine: str,
text_list: list,
model_path: str = "text2vec-base-chinese",
embedding_device: str = "cpu",
):
'''
get embedding
@param engine: openai / hf
@ -25,7 +30,7 @@ def get_embedding(engine: str, text_list: list):
oae = OpenAIEmbedding()
emb_res = oae.get_emb(text_list)
elif engine == 'model':
hfe = HFEmbedding(EMBEDDING_MODEL)
hfe = HFEmbedding(model_path, embedding_device)
emb_res = hfe.get_emb(text_list)
return emb_res

View File

@ -6,8 +6,9 @@
@desc:
'''
from loguru import logger
from configs.model_config import EMBEDDING_DEVICE
from dev_opsgpt.embeddings.utils import load_embeddings
# from configs.model_config import EMBEDDING_DEVICE
# from configs.model_config import embedding_model_dict
from coagent.embeddings.utils import load_embeddings, load_embeddings_from_path
class HFEmbedding:
@ -22,8 +23,8 @@ class HFEmbedding:
cls._instance[instance_key] = super().__new__(cls)
return cls._instance[instance_key]
def __init__(self, model_name):
self.model = load_embeddings(model=model_name, device=EMBEDDING_DEVICE)
def __init__(self, model_name, embedding_device):
self.model = load_embeddings_from_path(model_path=model_name, device=embedding_device)
logger.debug('load success')
def get_emb(self, text_list):
@ -32,9 +33,7 @@ class HFEmbedding:
@param text_list:
@return:
'''
logger.info('st')
emb_res = self.model.embed_documents(text_list)
logger.info('ed')
res = {
text_list[idx]: emb_res[idx] for idx in range(len(text_list))
}

View File

@ -0,0 +1,20 @@
import os
from functools import lru_cache
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
# from configs.model_config import embedding_model_dict
from loguru import logger
@lru_cache(1)
def load_embeddings(model: str, device: str, embedding_model_dict: dict):
embeddings = HuggingFaceEmbeddings(model_name=embedding_model_dict[model],
model_kwargs={'device': device})
return embeddings
@lru_cache(1)
def load_embeddings_from_path(model_path: str, device: str):
embeddings = HuggingFaceEmbeddings(model_name=model_path,
model_kwargs={'device': device})
return embeddings

View File

@ -0,0 +1,8 @@
from .openai_model import getChatModel, getExtraModel, getChatModelFromConfig
from .llm_config import LLMConfig, EmbedConfig
__all__ = [
"getChatModel", "getExtraModel", "getChatModelFromConfig",
"LLMConfig", "EmbedConfig"
]

View File

@ -0,0 +1,61 @@
from dataclasses import dataclass
from typing import List, Union
@dataclass
class LLMConfig:
def __init__(
self,
model_name: str = "gpt-3.5-turbo",
temperature: float = 0.25,
stop: Union[List[str], str] = None,
api_key: str = "",
api_base_url: str = "",
model_device: str = "cpu",
**kwargs
):
self.model_name: str = model_name
self.temperature: float = temperature
self.stop: Union[List[str], str] = stop
self.api_key: str = api_key
self.api_base_url: str = api_base_url
self.model_device: str = model_device
#
self.check_config()
def check_config(self, ):
pass
def __str__(self):
return ', '.join(f"{k}: {v}" for k,v in vars(self).items())
@dataclass
class EmbedConfig:
def __init__(
self,
api_key: str = "",
api_base_url: str = "",
embed_model: str = "",
embed_model_path: str = "",
embed_engine: str = "",
model_device: str = "cpu",
**kwargs
):
self.embed_model: str = embed_model
self.embed_model_path: str = embed_model_path
self.embed_engine: str = embed_engine
self.model_device: str = model_device
self.api_key: str = api_key
self.api_base_url: str = api_base_url
#
self.check_config()
def check_config(self, ):
pass
def __str__(self):
return ', '.join(f"{k}: {v}" for k,v in vars(self).items())

View File

@ -1,7 +1,10 @@
import os
from langchain.callbacks import AsyncIteratorCallbackHandler
from langchain.chat_models import ChatOpenAI
from configs.model_config import (llm_model_dict, LLM_MODEL)
from .llm_config import LLMConfig
# from configs.model_config import (llm_model_dict, LLM_MODEL)
def getChatModel(callBack: AsyncIteratorCallbackHandler = None, temperature=0.3, stop=None):
@ -28,6 +31,33 @@ def getChatModel(callBack: AsyncIteratorCallbackHandler = None, temperature=0.3,
)
return model
def getChatModelFromConfig(llm_config: LLMConfig, callBack: AsyncIteratorCallbackHandler = None, ):
if callBack is None:
model = ChatOpenAI(
streaming=True,
verbose=True,
openai_api_key=llm_config.api_key,
openai_api_base=llm_config.api_base_url,
model_name=llm_config.model_name,
temperature=llm_config.temperature,
stop=llm_config.stop
)
else:
model = ChatOpenAI(
streaming=True,
verbose=True,
callBack=[callBack],
openai_api_key=llm_config.api_key,
openai_api_base=llm_config.api_base_url,
model_name=llm_config.model_name,
temperature=llm_config.temperature,
stop=llm_config.stop
)
return model
import json, requests

Some files were not shown because too many files have changed in this diff Show More