309 lines
8.5 KiB
Python
309 lines
8.5 KiB
Python
from pydantic import BaseModel
|
|
from typing import List, Dict, Optional, Union
|
|
from enum import Enum
|
|
import re
|
|
import json
|
|
from loguru import logger
|
|
from langchain.tools import BaseTool
|
|
|
|
|
|
class ActionStatus(Enum):
|
|
DEFAUILT = "default"
|
|
|
|
FINISHED = "finished"
|
|
STOPPED = "stopped"
|
|
CONTINUED = "continued"
|
|
|
|
TOOL_USING = "tool_using"
|
|
CODING = "coding"
|
|
CODE_EXECUTING = "code_executing"
|
|
CODING2FILE = "coding2file"
|
|
|
|
PLANNING = "planning"
|
|
UNCHANGED = "unchanged"
|
|
ADJUSTED = "adjusted"
|
|
CODE_RETRIEVAL = "code_retrieval"
|
|
|
|
def __eq__(self, other):
|
|
if isinstance(other, str):
|
|
return self.value.lower() == other.lower()
|
|
return super().__eq__(other)
|
|
|
|
|
|
class Action(BaseModel):
|
|
action_name: str
|
|
description: str
|
|
|
|
class FinishedAction(Action):
|
|
action_name: str = ActionStatus.FINISHED
|
|
description: str = "provide the final answer to the original query to break the chain answer"
|
|
|
|
class StoppedAction(Action):
|
|
action_name: str = ActionStatus.STOPPED
|
|
description: str = "provide the final answer to the original query to break the agent answer"
|
|
|
|
class ContinuedAction(Action):
|
|
action_name: str = ActionStatus.CONTINUED
|
|
description: str = "cant't provide the final answer to the original query"
|
|
|
|
class ToolUsingAction(Action):
|
|
action_name: str = ActionStatus.TOOL_USING
|
|
description: str = "proceed with using the specified tool."
|
|
|
|
class CodingdAction(Action):
|
|
action_name: str = ActionStatus.CODING
|
|
description: str = "provide the answer by writing code"
|
|
|
|
class Coding2FileAction(Action):
|
|
action_name: str = ActionStatus.CODING2FILE
|
|
description: str = "provide the answer by writing code and filename"
|
|
|
|
class CodeExecutingAction(Action):
|
|
action_name: str = ActionStatus.CODE_EXECUTING
|
|
description: str = "provide the answer by writing executable code"
|
|
|
|
class PlanningAction(Action):
|
|
action_name: str = ActionStatus.PLANNING
|
|
description: str = "provide a sequence of tasks"
|
|
|
|
class UnchangedAction(Action):
|
|
action_name: str = ActionStatus.UNCHANGED
|
|
description: str = "this PLAN has no problem, just set PLAN_STEP to CURRENT_STEP+1."
|
|
|
|
class AdjustedAction(Action):
|
|
action_name: str = ActionStatus.ADJUSTED
|
|
description: str = "the PLAN is to provide an optimized version of the original plan."
|
|
|
|
# extended action exmaple
|
|
class CodeRetrievalAction(Action):
|
|
action_name: str = ActionStatus.CODE_RETRIEVAL
|
|
description: str = "execute the code retrieval to acquire more code information"
|
|
|
|
|
|
class RoleTypeEnums(Enum):
|
|
SYSTEM = "system"
|
|
USER = "user"
|
|
ASSISTANT = "assistant"
|
|
FUNCTION = "function"
|
|
OBSERVATION = "observation"
|
|
SUMMARY = "summary"
|
|
|
|
def __eq__(self, other):
|
|
if isinstance(other, str):
|
|
return self.value == other
|
|
return super().__eq__(other)
|
|
|
|
|
|
class PromptKey(BaseModel):
|
|
key_name: str
|
|
description: str
|
|
|
|
class PromptKeyEnums(Enum):
|
|
# Origin Query is ui's user question
|
|
ORIGIN_QUERY = "origin_query"
|
|
# agent's input from last agent
|
|
CURRENT_QUESTION = "current_question"
|
|
# ui memory contaisn (user and assistants)
|
|
UI_MEMORY = "ui_memory"
|
|
# agent's memory
|
|
SELF_MEMORY = "self_memory"
|
|
# chain memory
|
|
CHAIN_MEMORY = "chain_memory"
|
|
# agent's memory
|
|
SELF_LOCAL_MEMORY = "self_local_memory"
|
|
# chain memory
|
|
CHAIN_LOCAL_MEMORY = "chain_local_memory"
|
|
# Doc Infomations contains (Doc\Code\Search)
|
|
DOC_INFOS = "doc_infos"
|
|
|
|
def __eq__(self, other):
|
|
if isinstance(other, str):
|
|
return self.value == other
|
|
return super().__eq__(other)
|
|
|
|
|
|
class Doc(BaseModel):
|
|
title: str
|
|
snippet: str
|
|
link: str
|
|
index: int
|
|
|
|
def get_title(self):
|
|
return self.title
|
|
|
|
def get_snippet(self, ):
|
|
return self.snippet
|
|
|
|
def get_link(self, ):
|
|
return self.link
|
|
|
|
def get_index(self, ):
|
|
return self.index
|
|
|
|
def to_json(self):
|
|
return vars(self)
|
|
|
|
def __str__(self,):
|
|
return f"""出处 [{self.index + 1}] 标题 [{self.title}]\n\n来源 ({self.link}) \n\n内容 {self.snippet}\n\n"""
|
|
|
|
|
|
class CodeDoc(BaseModel):
|
|
code: str
|
|
related_nodes: list
|
|
index: int
|
|
|
|
def get_code(self, ):
|
|
return self.code
|
|
|
|
def get_related_node(self, ):
|
|
return self.related_nodes
|
|
|
|
def get_index(self, ):
|
|
return self.index
|
|
|
|
def to_json(self):
|
|
return vars(self)
|
|
|
|
def __str__(self,):
|
|
return f"""出处 [{self.index + 1}] \n\n来源 ({self.related_nodes}) \n\n内容 {self.code}\n\n"""
|
|
|
|
|
|
class LogVerboseEnum(Enum):
|
|
Log0Level = "0" # don't print log
|
|
Log1Level = "1" # print level-1 log
|
|
Log2Level = "2" # print level-2 log
|
|
Log3Level = "3" # print level-3 log
|
|
|
|
def __eq__(self, other):
|
|
if isinstance(other, str):
|
|
return self.value.lower() == other.lower()
|
|
if isinstance(other, LogVerboseEnum):
|
|
return self.value == other.value
|
|
return False
|
|
|
|
def __ge__(self, other):
|
|
if isinstance(other, LogVerboseEnum):
|
|
return int(self.value) >= int(other.value)
|
|
if isinstance(other, str):
|
|
return int(self.value) >= int(other)
|
|
return NotImplemented
|
|
|
|
def __le__(self, other):
|
|
if isinstance(other, LogVerboseEnum):
|
|
return int(self.value) <= int(other.value)
|
|
if isinstance(other, str):
|
|
return int(self.value) <= int(other)
|
|
return NotImplemented
|
|
|
|
@classmethod
|
|
def ge(self, enum_value: 'LogVerboseEnum', other: Union[str, 'LogVerboseEnum']):
|
|
return enum_value <= other
|
|
|
|
|
|
class Task(BaseModel):
|
|
task_type: str
|
|
task_name: str
|
|
task_desc: str
|
|
task_prompt: str
|
|
|
|
class Env(BaseModel):
|
|
env_type: str
|
|
env_name: str
|
|
env_desc:str
|
|
|
|
|
|
class Role(BaseModel):
|
|
role_type: str
|
|
role_name: str
|
|
role_desc: str
|
|
agent_type: str = ""
|
|
role_prompt: str = ""
|
|
template_prompt: str = ""
|
|
|
|
|
|
class ChainConfig(BaseModel):
|
|
chain_name: str
|
|
chain_type: str
|
|
agents: List[str]
|
|
do_checker: bool = False
|
|
chat_turn: int = 1
|
|
|
|
|
|
class PromptField(BaseModel):
|
|
field_name: str # 假设这是一个函数类型,您可以根据需要更改
|
|
function_name: str
|
|
title: Optional[str] = None
|
|
description: Optional[str] = None
|
|
is_context: Optional[bool] = True
|
|
omit_if_empty: Optional[bool] = True
|
|
|
|
|
|
class AgentConfig(BaseModel):
|
|
role: Role
|
|
prompt_config: List[PromptField]
|
|
prompt_manager_type: str = "PromptManager"
|
|
chat_turn: int = 1
|
|
focus_agents: List = []
|
|
focus_message_keys: List = []
|
|
group_agents: List = []
|
|
stop: str = ""
|
|
|
|
|
|
class PhaseConfig(BaseModel):
|
|
phase_name: str
|
|
phase_type: str
|
|
chains: List[str]
|
|
do_summary: bool = False
|
|
do_search: bool = False
|
|
do_doc_retrieval: bool = False
|
|
do_code_retrieval: bool = False
|
|
do_tool_retrieval: bool = False
|
|
|
|
|
|
class CompleteChainConfig(BaseModel):
|
|
chain_name: str
|
|
chain_type: str
|
|
agents: Dict[str, AgentConfig]
|
|
do_checker: bool = False
|
|
chat_turn: int = 1
|
|
|
|
|
|
class CompletePhaseConfig(BaseModel):
|
|
phase_name: str
|
|
phase_type: str
|
|
chains: Dict[str, CompleteChainConfig]
|
|
do_summary: bool = False
|
|
do_search: bool = False
|
|
do_doc_retrieval: bool = False
|
|
do_code_retrieval: bool = False
|
|
do_tool_retrieval: bool = False
|
|
|
|
|
|
def load_role_configs(config) -> Dict[str, AgentConfig]:
|
|
if isinstance(config, str):
|
|
with open(config, 'r', encoding="utf8") as file:
|
|
configs = json.load(file)
|
|
else:
|
|
configs = config
|
|
# logger.debug(configs)
|
|
return {name: AgentConfig(**v) for name, v in configs.items()}
|
|
|
|
|
|
def load_chain_configs(config) -> Dict[str, ChainConfig]:
|
|
if isinstance(config, str):
|
|
with open(config, 'r', encoding="utf8") as file:
|
|
configs = json.load(file)
|
|
else:
|
|
configs = config
|
|
return {name: ChainConfig(**v) for name, v in configs.items()}
|
|
|
|
|
|
def load_phase_configs(config) -> Dict[str, PhaseConfig]:
|
|
if isinstance(config, str):
|
|
with open(config, 'r', encoding="utf8") as file:
|
|
configs = json.load(file)
|
|
else:
|
|
configs = config
|
|
return {name: PhaseConfig(**v) for name, v in configs.items()}
|
|
|
|
# AgentConfig.update_forward_refs() |