665 lines
34 KiB
Python
665 lines
34 KiB
Python
from pydantic import BaseModel
|
|
from typing import List, Union
|
|
import re
|
|
import copy
|
|
import json
|
|
import traceback
|
|
import uuid
|
|
from loguru import logger
|
|
|
|
from dev_opsgpt.connector.schema import (
|
|
Memory, Task, Env, Role, Message, ActionStatus, CodeDoc, Doc
|
|
)
|
|
from configs.server_config import SANDBOX_SERVER
|
|
from dev_opsgpt.sandbox import PyCodeBox, CodeBoxResponse
|
|
from dev_opsgpt.tools import DDGSTool, DocRetrieval, CodeRetrieval
|
|
from dev_opsgpt.connector.configs.prompts import BASE_PROMPT_INPUT, QUERY_CONTEXT_DOC_PROMPT_INPUT, BEGIN_PROMPT_INPUT
|
|
from dev_opsgpt.connector.message_process import MessageUtils
|
|
from dev_opsgpt.connector.configs.agent_config import REACT_PROMPT_INPUT, QUERY_CONTEXT_PROMPT_INPUT, PLAN_PROMPT_INPUT
|
|
|
|
from dev_opsgpt.llm_models import getChatModel
|
|
from dev_opsgpt.connector.utils import parse_section
|
|
|
|
|
|
|
|
class BaseAgent:
|
|
|
|
def __init__(
|
|
self,
|
|
role: Role,
|
|
task: Task = None,
|
|
memory: Memory = None,
|
|
chat_turn: int = 1,
|
|
do_search: bool = False,
|
|
do_doc_retrieval: bool = False,
|
|
do_tool_retrieval: bool = False,
|
|
temperature: float = 0.2,
|
|
stop: Union[List[str], str] = None,
|
|
do_filter: bool = True,
|
|
do_use_self_memory: bool = True,
|
|
focus_agents: List[str] = [],
|
|
focus_message_keys: List[str] = [],
|
|
# prompt_mamnger: PromptManager
|
|
):
|
|
|
|
self.task = task
|
|
self.role = role
|
|
self.message_utils = MessageUtils()
|
|
self.llm = self.create_llm_engine(temperature, stop)
|
|
self.memory = self.init_history(memory)
|
|
self.chat_turn = chat_turn
|
|
self.do_search = do_search
|
|
self.do_doc_retrieval = do_doc_retrieval
|
|
self.do_tool_retrieval = do_tool_retrieval
|
|
self.focus_agents = focus_agents
|
|
self.focus_message_keys = focus_message_keys
|
|
self.do_filter = do_filter
|
|
self.do_use_self_memory = do_use_self_memory
|
|
# self.prompt_manager = None
|
|
|
|
def run(self, query: Message, history: Memory = None, background: Memory = None, memory_pool: Memory=None) -> Message:
|
|
'''agent reponse from multi-message'''
|
|
message = None
|
|
for message in self.arun(query, history, background, memory_pool):
|
|
pass
|
|
return message
|
|
|
|
def arun(self, query: Message, history: Memory = None, background: Memory = None, memory_pool: Memory=None) -> Message:
|
|
'''agent reponse from multi-message'''
|
|
# insert query into memory
|
|
query_c = copy.deepcopy(query)
|
|
|
|
self_memory = self.memory if self.do_use_self_memory else None
|
|
# create your llm prompt
|
|
prompt = self.create_prompt(query_c, self_memory, history, background, memory_pool=memory_pool)
|
|
content = self.llm.predict(prompt)
|
|
logger.debug(f"{self.role.role_name} prompt: {prompt}")
|
|
logger.debug(f"{self.role.role_name} content: {content}")
|
|
|
|
output_message = Message(
|
|
role_name=self.role.role_name,
|
|
role_type="ai", #self.role.role_type,
|
|
role_content=content,
|
|
role_contents=[content],
|
|
step_content=content,
|
|
input_query=query_c.input_query,
|
|
tools=query_c.tools,
|
|
parsed_output_list=[query.parsed_output]
|
|
)
|
|
# common parse llm' content to message
|
|
output_message = self.message_utils.parser(output_message)
|
|
if self.do_filter:
|
|
output_message = self.message_utils.filter(output_message)
|
|
|
|
# update self_memory
|
|
self.append_history(query_c)
|
|
self.append_history(output_message)
|
|
# logger.info(f"{self.role.role_name} currenct question: {output_message.input_query}\nllm_step_run: {output_message.role_content}")
|
|
output_message.input_query = output_message.role_content
|
|
output_message.parsed_output_list.append(output_message.parsed_output)
|
|
# update memory pool
|
|
memory_pool.append(output_message)
|
|
yield output_message
|
|
|
|
def create_prompt(
|
|
self, query: Message, memory: Memory =None, history: Memory = None, background: Memory = None, memory_pool: Memory=None, prompt_mamnger=None) -> str:
|
|
'''
|
|
prompt engineer, contains role\task\tools\docs\memory
|
|
'''
|
|
#
|
|
doc_infos = self.create_doc_prompt(query)
|
|
code_infos = self.create_codedoc_prompt(query)
|
|
#
|
|
formatted_tools, tool_names = self.create_tools_prompt(query)
|
|
task_prompt = self.create_task_prompt(query)
|
|
background_prompt = self.create_background_prompt(background, control_key="step_content")
|
|
history_prompt = self.create_history_prompt(history)
|
|
selfmemory_prompt = self.create_selfmemory_prompt(memory, control_key="step_content")
|
|
|
|
# extra_system_prompt = self.role.role_prompt
|
|
|
|
|
|
prompt = self.role.role_prompt.format(**{"formatted_tools": formatted_tools, "tool_names": tool_names})
|
|
#
|
|
memory_pool_select_by_agent_key = self.select_memory_by_agent_key(memory_pool)
|
|
memory_pool_select_by_agent_key_context = '\n\n'.join([f"*{k}*\n{v}" for parsed_output in memory_pool_select_by_agent_key.get_parserd_output_list() for k, v in parsed_output.items() if k not in ['Action Status']])
|
|
|
|
# input_query = query.input_query
|
|
|
|
# # logger.debug(f"{self.role.role_name} extra_system_prompt: {self.role.role_prompt}")
|
|
# # logger.debug(f"{self.role.role_name} input_query: {input_query}")
|
|
# # logger.debug(f"{self.role.role_name} doc_infos: {doc_infos}")
|
|
# # logger.debug(f"{self.role.role_name} tool_names: {tool_names}")
|
|
# if "**Context:**" in self.role.role_prompt:
|
|
# # logger.debug(f"parsed_output_list: {query.parsed_output_list}")
|
|
# # input_query = "'''" + "\n".join([f"###{k}###\n{v}" for i in query.parsed_output_list for k,v in i.items() if "Action Status" !=k]) + "'''"
|
|
# context = "\n".join([f"*{k}*\n{v}" for i in query.parsed_output_list for k,v in i.items() if "Action Status" !=k])
|
|
# # context = history_prompt or '""'
|
|
# # logger.debug(f"parsed_output_list: {t}")
|
|
# prompt += "\n" + QUERY_CONTEXT_PROMPT_INPUT.format(**{"context": context, "query": query.origin_query})
|
|
# else:
|
|
# prompt += "\n" + PLAN_PROMPT_INPUT.format(**{"query": input_query})
|
|
|
|
task = query.task or self.task
|
|
if task_prompt is not None:
|
|
prompt += "\n" + task.task_prompt
|
|
|
|
DocInfos = ""
|
|
if doc_infos is not None and doc_infos!="" and doc_infos!="不存在知识库辅助信息":
|
|
DocInfos += f"\nDocument Information: {doc_infos}"
|
|
|
|
if code_infos is not None and code_infos!="" and code_infos!="不存在代码库辅助信息":
|
|
DocInfos += f"\nCodeBase Infomation: {code_infos}"
|
|
|
|
# if selfmemory_prompt:
|
|
# prompt += "\n" + selfmemory_prompt
|
|
|
|
# if background_prompt:
|
|
# prompt += "\n" + background_prompt
|
|
|
|
# if history_prompt:
|
|
# prompt += "\n" + history_prompt
|
|
|
|
input_query = query.input_query
|
|
|
|
# logger.debug(f"{self.role.role_name} extra_system_prompt: {self.role.role_prompt}")
|
|
# logger.debug(f"{self.role.role_name} input_query: {input_query}")
|
|
# logger.debug(f"{self.role.role_name} doc_infos: {doc_infos}")
|
|
# logger.debug(f"{self.role.role_name} tool_names: {tool_names}")
|
|
|
|
# extra_system_prompt = self.role.role_prompt
|
|
input_keys = parse_section(self.role.role_prompt, 'Input Format')
|
|
prompt = self.role.role_prompt.format(**{"formatted_tools": formatted_tools, "tool_names": tool_names})
|
|
prompt += "\n" + BEGIN_PROMPT_INPUT
|
|
for input_key in input_keys:
|
|
if input_key == "Origin Query":
|
|
prompt += "\n**Origin Query:**\n" + query.origin_query
|
|
elif input_key == "Context":
|
|
context = "\n".join([f"*{k}*\n{v}" for i in query.parsed_output_list for k,v in i.items() if "Action Status" !=k])
|
|
if history:
|
|
context = history_prompt + "\n" + context
|
|
if not context:
|
|
context = "there is no context"
|
|
|
|
if self.focus_agents and memory_pool_select_by_agent_key_context:
|
|
context = memory_pool_select_by_agent_key_context
|
|
prompt += "\n**Context:**\n" + context + "\n" + input_query
|
|
elif input_key == "DocInfos":
|
|
prompt += "\n**DocInfos:**\n" + DocInfos
|
|
elif input_key == "Question":
|
|
prompt += "\n**Question:**\n" + input_query
|
|
|
|
# if "**Context:**" in self.role.role_prompt:
|
|
# # logger.debug(f"parsed_output_list: {query.parsed_output_list}")
|
|
# # input_query = "'''" + "\n".join([f"###{k}###\n{v}" for i in query.parsed_output_list for k,v in i.items() if "Action Status" !=k]) + "'''"
|
|
# context = "\n".join([f"*{k}*\n{v}" for i in query.parsed_output_list for k,v in i.items() if "Action Status" !=k])
|
|
# if history:
|
|
# context = history_prompt + "\n" + context
|
|
|
|
# if not context:
|
|
# context = "there is no context"
|
|
|
|
# # logger.debug(f"parsed_output_list: {t}")
|
|
# if "DocInfos" in prompt:
|
|
# prompt += "\n" + QUERY_CONTEXT_DOC_PROMPT_INPUT.format(**{"context": context, "query": query.origin_query, "DocInfos": DocInfos})
|
|
# else:
|
|
# prompt += "\n" + QUERY_CONTEXT_PROMPT_INPUT.format(**{"context": context, "query": query.origin_query, "DocInfos": DocInfos})
|
|
# else:
|
|
# prompt += "\n" + BASE_PROMPT_INPUT.format(**{"query": input_query})
|
|
|
|
# prompt = extra_system_prompt.format(**{"query": input_query, "doc_infos": doc_infos, "formatted_tools": formatted_tools, "tool_names": tool_names})
|
|
while "{{" in prompt or "}}" in prompt:
|
|
prompt = prompt.replace("{{", "{")
|
|
prompt = prompt.replace("}}", "}")
|
|
|
|
# logger.debug(f"{self.role.role_name} prompt: {prompt}")
|
|
return prompt
|
|
|
|
def create_doc_prompt(self, message: Message) -> str:
|
|
''''''
|
|
db_docs = message.db_docs
|
|
search_docs = message.search_docs
|
|
doc_infos = "\n".join([doc.get_snippet() for doc in db_docs] + [doc.get_snippet() for doc in search_docs])
|
|
return doc_infos or "不存在知识库辅助信息"
|
|
|
|
def create_codedoc_prompt(self, message: Message) -> str:
|
|
''''''
|
|
code_docs = message.code_docs
|
|
doc_infos = "\n".join([doc.get_code() for doc in code_docs])
|
|
return doc_infos or "不存在代码库辅助信息"
|
|
|
|
def create_tools_prompt(self, message: Message) -> str:
|
|
tools = message.tools
|
|
tool_strings = []
|
|
for tool in tools:
|
|
args_schema = re.sub("}", "}}}}", re.sub("{", "{{{{", str(tool.args)))
|
|
tool_strings.append(f"{tool.name}: {tool.description}, args: {args_schema}")
|
|
formatted_tools = "\n".join(tool_strings)
|
|
tool_names = ", ".join([tool.name for tool in tools])
|
|
return formatted_tools, tool_names
|
|
|
|
def create_task_prompt(self, message: Message) -> str:
|
|
task = message.task or self.task
|
|
return "\n任务目标: " + task.task_prompt if task is not None else None
|
|
|
|
def create_background_prompt(self, background: Memory, control_key="role_content") -> str:
|
|
background_message = None if background is None else background.to_str_messages(content_key=control_key)
|
|
# logger.debug(f"background_message: {background_message}")
|
|
if background_message:
|
|
background_message = re.sub("}", "}}", re.sub("{", "{{", background_message))
|
|
return "\n背景信息: " + background_message if background_message else None
|
|
|
|
def create_history_prompt(self, history: Memory, control_key="role_content") -> str:
|
|
history_message = None if history is None else history.to_str_messages(content_key=control_key)
|
|
if history_message:
|
|
history_message = re.sub("}", "}}", re.sub("{", "{{", history_message))
|
|
return "\n补充对话信息: " + history_message if history_message else None
|
|
|
|
def create_selfmemory_prompt(self, selfmemory: Memory, control_key="role_content") -> str:
|
|
selfmemory_message = None if selfmemory is None else selfmemory.to_str_messages(content_key=control_key)
|
|
if selfmemory_message:
|
|
selfmemory_message = re.sub("}", "}}", re.sub("{", "{{", selfmemory_message))
|
|
return "\n补充自身对话信息: " + selfmemory_message if selfmemory_message else None
|
|
|
|
def init_history(self, memory: Memory = None) -> Memory:
|
|
return Memory(messages=[])
|
|
|
|
def update_history(self, message: Message):
|
|
self.memory.append(message)
|
|
|
|
def append_history(self, message: Message):
|
|
self.memory.append(message)
|
|
|
|
def clear_history(self, ):
|
|
self.memory.clear()
|
|
self.memory = self.init_history()
|
|
|
|
def create_llm_engine(self, temperature=0.2, stop=None):
|
|
return getChatModel(temperature=temperature, stop=stop)
|
|
|
|
# def filter(self, message: Message, stop=None) -> Message:
|
|
|
|
# tool_params = self.parser_spec_key(message.role_content, "tool_params")
|
|
# code_content = self.parser_spec_key(message.role_content, "code_content")
|
|
# plan = self.parser_spec_key(message.role_content, "plan")
|
|
# plans = self.parser_spec_key(message.role_content, "plans", do_search=False)
|
|
# content = self.parser_spec_key(message.role_content, "content", do_search=False)
|
|
|
|
# # logger.debug(f"tool_params: {tool_params}, code_content: {code_content}, plan: {plan}, plans: {plans}, content: {content}")
|
|
# role_content = tool_params or code_content or plan or plans or content
|
|
# message.role_content = role_content or message.role_content
|
|
# return message
|
|
|
|
def token_usage(self, ):
|
|
'''calculate the usage of token'''
|
|
pass
|
|
|
|
def select_memory_by_key(self, memory: Memory) -> Memory:
|
|
return Memory(
|
|
messages=[self.select_message_by_key(message) for message in memory.messages
|
|
if self.select_message_by_key(message) is not None]
|
|
)
|
|
|
|
def select_memory_by_agent_key(self, memory: Memory) -> Memory:
|
|
return Memory(
|
|
messages=[self.select_message_by_agent_key(message) for message in memory.messages
|
|
if self.select_message_by_agent_key(message) is not None]
|
|
)
|
|
|
|
def select_message_by_agent_key(self, message: Message) -> Message:
|
|
# assume we focus all agents
|
|
if self.focus_agents == []:
|
|
return message
|
|
return None if message is None or message.role_name not in self.focus_agents else self.select_message_by_key(message)
|
|
|
|
def select_message_by_key(self, message: Message) -> Message:
|
|
# assume we focus all key contents
|
|
if message is None:
|
|
return message
|
|
|
|
if self.focus_message_keys == []:
|
|
return message
|
|
|
|
message_c = copy.deepcopy(message)
|
|
message_c.parsed_output = {k: v for k,v in message_c.parsed_output.items() if k in self.focus_message_keys}
|
|
message_c.parsed_output_list = [{k: v for k,v in parsed_output.items() if k in self.focus_message_keys} for parsed_output in message_c.parsed_output_list]
|
|
return message_c
|
|
|
|
# def get_extra_infos(self, message: Message) -> Message:
|
|
# ''''''
|
|
# if self.do_search:
|
|
# message = self.get_search_retrieval(message)
|
|
|
|
# if self.do_doc_retrieval:
|
|
# message = self.get_doc_retrieval(message)
|
|
|
|
# if self.do_tool_retrieval:
|
|
# message = self.get_tool_retrieval(message)
|
|
|
|
# return message
|
|
|
|
# def get_search_retrieval(self, message: Message,) -> Message:
|
|
# SEARCH_ENGINES = {"duckduckgo": DDGSTool}
|
|
# search_docs = []
|
|
# for idx, doc in enumerate(SEARCH_ENGINES["duckduckgo"].run(message.role_content, 3)):
|
|
# doc.update({"index": idx})
|
|
# search_docs.append(Doc(**doc))
|
|
# message.search_docs = search_docs
|
|
# return message
|
|
|
|
# def get_doc_retrieval(self, message: Message) -> Message:
|
|
# query = message.role_content
|
|
# knowledge_basename = message.doc_engine_name
|
|
# top_k = message.top_k
|
|
# score_threshold = message.score_threshold
|
|
# if knowledge_basename:
|
|
# docs = DocRetrieval.run(query, knowledge_basename, top_k, score_threshold)
|
|
# message.db_docs = [Doc(**doc) for doc in docs]
|
|
# return message
|
|
|
|
# def get_code_retrieval(self, message: Message) -> Message:
|
|
# # DocRetrieval.run("langchain是什么", "DSADSAD")
|
|
# query = message.input_query
|
|
# code_engine_name = message.code_engine_name
|
|
# history_node_list = message.history_node_list
|
|
# code_docs = CodeRetrieval.run(code_engine_name, query, code_limit=message.top_k, history_node_list=history_node_list)
|
|
# message.code_docs = [CodeDoc(**doc) for doc in code_docs]
|
|
# return message
|
|
|
|
# def get_tool_retrieval(self, message: Message) -> Message:
|
|
# return message
|
|
|
|
# def step_router(self, message: Message) -> tuple[Message, ...]:
|
|
# ''''''
|
|
# # message = self.parser(message)
|
|
# # logger.debug(f"message.action_status: {message.action_status}")
|
|
# observation_message = None
|
|
# if message.action_status == ActionStatus.CODING:
|
|
# message, observation_message = self.code_step(message)
|
|
# elif message.action_status == ActionStatus.TOOL_USING:
|
|
# message, observation_message = self.tool_step(message)
|
|
|
|
# return message, observation_message
|
|
|
|
# def code_step(self, message: Message) -> Message:
|
|
# '''execute code'''
|
|
# # logger.debug(f"message.role_content: {message.role_content}, message.code_content: {message.code_content}")
|
|
# code_answer = self.codebox.chat('```python\n{}```'.format(message.code_content))
|
|
# code_prompt = f"执行上述代码后存在报错信息为 {code_answer.code_exe_response},需要进行修复" \
|
|
# if code_answer.code_exe_type == "error" else f"执行上述代码后返回信息为 {code_answer.code_exe_response}"
|
|
|
|
# observation_message = Message(
|
|
# role_name="observation",
|
|
# role_type="func", #self.role.role_type,
|
|
# role_content="",
|
|
# step_content="",
|
|
# input_query=message.code_content,
|
|
# )
|
|
# uid = str(uuid.uuid1())
|
|
# if code_answer.code_exe_type == "image/png":
|
|
# message.figures[uid] = code_answer.code_exe_response
|
|
# message.code_answer = f"\n**Observation:**: 执行上述代码后生成一张图片, 图片名为{uid}\n"
|
|
# message.observation = f"\n**Observation:**: 执行上述代码后生成一张图片, 图片名为{uid}\n"
|
|
# message.step_content += f"\n**Observation:**: 执行上述代码后生成一张图片, 图片名为{uid}\n"
|
|
# message.step_contents += [f"\n**Observation:**: 执行上述代码后生成一张图片, 图片名为{uid}\n"]
|
|
# # message.role_content += f"\n**Observation:**:执行上述代码后生成一张图片, 图片名为{uid}\n"
|
|
# observation_message.role_content = f"\n**Observation:**: 执行上述代码后生成一张图片, 图片名为{uid}\n"
|
|
# observation_message.parsed_output = {"Observation": f"执行上述代码后生成一张图片, 图片名为{uid}"}
|
|
# else:
|
|
# message.code_answer = code_answer.code_exe_response
|
|
# message.observation = code_answer.code_exe_response
|
|
# message.step_content += f"\n**Observation:**: {code_prompt}\n"
|
|
# message.step_contents += [f"\n**Observation:**: {code_prompt}\n"]
|
|
# # message.role_content += f"\n**Observation:**: {code_prompt}\n"
|
|
# observation_message.role_content = f"\n**Observation:**: {code_prompt}\n"
|
|
# observation_message.parsed_output = {"Observation": code_prompt}
|
|
# # logger.info(f"**Observation:** {message.action_status}, {message.observation}")
|
|
# return message, observation_message
|
|
|
|
# def tool_step(self, message: Message) -> Message:
|
|
# '''execute tool'''
|
|
# # logger.debug(f"{message}")
|
|
# observation_message = Message(
|
|
# role_name="observation",
|
|
# role_type="function", #self.role.role_type,
|
|
# role_content="\n**Observation:** there is no tool can execute\n" ,
|
|
# step_content="",
|
|
# input_query=str(message.tool_params),
|
|
# tools=message.tools,
|
|
# )
|
|
# # logger.debug(f"message: {message.action_status}, {message.tool_name}, {message.tool_params}")
|
|
# tool_names = [tool.name for tool in message.tools]
|
|
# if message.tool_name not in tool_names:
|
|
# message.tool_answer = "\n**Observation:** there is no tool can execute\n"
|
|
# message.observation = "\n**Observation:** there is no tool can execute\n"
|
|
# # message.role_content += f"\n**Observation:**: 不存在可以执行的tool\n"
|
|
# message.step_content += f"\n**Observation:** there is no tool can execute\n"
|
|
# message.step_contents += [f"\n**Observation:** there is no tool can execute\n"]
|
|
# observation_message.role_content = f"\n**Observation:** there is no tool can execute\n"
|
|
# observation_message.parsed_output = {"Observation": "there is no tool can execute\n"}
|
|
# for tool in message.tools:
|
|
# if tool.name == message.tool_name:
|
|
# tool_res = tool.func(**message.tool_params.get("tool_params", {}))
|
|
# logger.debug(f"tool_res {tool_res}")
|
|
# message.tool_answer = tool_res
|
|
# message.observation = tool_res
|
|
# # message.role_content += f"\n**Observation:**: {tool_res}\n"
|
|
# message.step_content += f"\n**Observation:** {tool_res}\n"
|
|
# message.step_contents += [f"\n**Observation:** {tool_res}\n"]
|
|
# observation_message.role_content = f"\n**Observation:** {tool_res}\n"
|
|
# observation_message.parsed_output = {"Observation": tool_res}
|
|
# break
|
|
|
|
# # logger.info(f"**Observation:** {message.action_status}, {message.observation}")
|
|
# return message, observation_message
|
|
|
|
# def parser(self, message: Message) -> Message:
|
|
# ''''''
|
|
# content = message.role_content
|
|
# parser_keys = ["action", "code_content", "code_filename", "tool_params", "plans"]
|
|
# try:
|
|
# s_json = self._parse_json(content)
|
|
# message.action_status = s_json.get("action")
|
|
# message.code_content = s_json.get("code_content")
|
|
# message.tool_params = s_json.get("tool_params")
|
|
# message.tool_name = s_json.get("tool_name")
|
|
# message.code_filename = s_json.get("code_filename")
|
|
# message.plans = s_json.get("plans")
|
|
# # for parser_key in parser_keys:
|
|
# # message.action_status = content.get(parser_key)
|
|
# except Exception as e:
|
|
# # logger.warning(f"{traceback.format_exc()}")
|
|
# def parse_text_to_dict(text):
|
|
# # Define a regular expression pattern to capture the key and value
|
|
# main_pattern = r"\*\*(.+?):\*\*\s*(.*?)\s*(?=\*\*|$)"
|
|
# list_pattern = r'```python\n(.*?)```'
|
|
|
|
# # Use re.findall to find all main matches in the text
|
|
# main_matches = re.findall(main_pattern, text, re.DOTALL)
|
|
|
|
# # Convert main matches to a dictionary
|
|
# parsed_dict = {key.strip(): value.strip() for key, value in main_matches}
|
|
|
|
# for k, v in parsed_dict.items():
|
|
# for pattern in [list_pattern]:
|
|
# if "PLAN" != k: continue
|
|
# match_value = re.search(pattern, v, re.DOTALL)
|
|
# if match_value:
|
|
# # Add the code block to the dictionary
|
|
# parsed_dict[k] = eval(match_value.group(1).strip())
|
|
# break
|
|
|
|
# return parsed_dict
|
|
|
|
# def extract_content_from_backticks(text):
|
|
# code_blocks = []
|
|
# lines = text.split('\n')
|
|
# is_code_block = False
|
|
# code_block = ''
|
|
# language = ''
|
|
# for line in lines:
|
|
# if line.startswith('```') and not is_code_block:
|
|
# is_code_block = True
|
|
# language = line[3:]
|
|
# code_block = ''
|
|
# elif line.startswith('```') and is_code_block:
|
|
# is_code_block = False
|
|
# code_blocks.append({language.strip(): code_block.strip()})
|
|
# elif is_code_block:
|
|
# code_block += line + '\n'
|
|
# return code_blocks
|
|
|
|
# def parse_dict_to_dict(parsed_dict):
|
|
# code_pattern = r'```python\n(.*?)```'
|
|
# tool_pattern = r'```tool_params\n(.*?)```'
|
|
|
|
# pattern_dict = {"code": code_pattern, "tool_params": tool_pattern}
|
|
# spec_parsed_dict = copy.deepcopy(parsed_dict)
|
|
# for key, pattern in pattern_dict.items():
|
|
# for k, text in parsed_dict.items():
|
|
# # Search for the code block
|
|
# if not isinstance(text, str): continue
|
|
# _match = re.search(pattern, text, re.DOTALL)
|
|
# if _match:
|
|
# # Add the code block to the dictionary
|
|
# try:
|
|
# spec_parsed_dict[key] = json.loads(_match.group(1).strip())
|
|
# except:
|
|
# spec_parsed_dict[key] = _match.group(1).strip()
|
|
# break
|
|
# return spec_parsed_dict
|
|
# def parse_dict_to_dict(parsed_dict):
|
|
# code_pattern = r'```python\n(.*?)```'
|
|
# tool_pattern = r'```json\n(.*?)```'
|
|
|
|
# pattern_dict = {"code": code_pattern, "json": tool_pattern}
|
|
# spec_parsed_dict = copy.deepcopy(parsed_dict)
|
|
# for key, pattern in pattern_dict.items():
|
|
# for k, text in parsed_dict.items():
|
|
# # Search for the code block
|
|
# if not isinstance(text, str): continue
|
|
# _match = re.search(pattern, text, re.DOTALL)
|
|
# if _match:
|
|
# # Add the code block to the dictionary
|
|
# logger.debug(f"dsadsa {text}")
|
|
# try:
|
|
# spec_parsed_dict[key] = json.loads(_match.group(1).strip())
|
|
# except:
|
|
# spec_parsed_dict[key] = _match.group(1).strip()
|
|
# break
|
|
# return spec_parsed_dict
|
|
|
|
# parsed_dict = parse_text_to_dict(content)
|
|
# spec_parsed_dict = parse_dict_to_dict(parsed_dict)
|
|
# action_value = parsed_dict.get('Action Status')
|
|
# if action_value:
|
|
# action_value = action_value.lower()
|
|
# logger.info(f'{self.role.role_name}: action_value: {action_value}')
|
|
# # action_value = self._match(r"'action':\s*'([^']*)'", content) if "'action'" in content else self._match(r'"action":\s*"([^"]*)"', content)
|
|
|
|
# code_content_value = spec_parsed_dict.get('code')
|
|
# # code_content_value = self._match(r"'code_content':\s*'([^']*)'", content) if "'code_content'" in content else self._match(r'"code_content":\s*"([^"]*)"', content)
|
|
# filename_value = self._match(r"'code_filename':\s*'([^']*)'", content) if "'code_filename'" in content else self._match(r'"code_filename":\s*"([^"]*)"', content)
|
|
# tool_params_value = spec_parsed_dict.get('tool_params')
|
|
# # tool_params_value = self._match(r"'tool_params':\s*(\{[^{}]*\})", content, do_json=True) if "'tool_params'" in content \
|
|
# # else self._match(r'"tool_params":\s*(\{[^{}]*\})', content, do_json=True)
|
|
# tool_name_value = self._match(r"'tool_name':\s*'([^']*)'", content) if "'tool_name'" in content else self._match(r'"tool_name":\s*"([^"]*)"', content)
|
|
# plans_value = self._match(r"'plans':\s*(\[.*?\])", content, do_search=False) if "'plans'" in content else self._match(r'"plans":\s*(\[.*?\])', content, do_search=False, )
|
|
# # re解析
|
|
# message.action_status = action_value or "default"
|
|
# message.code_content = code_content_value
|
|
# message.code_filename = filename_value
|
|
# message.tool_params = tool_params_value
|
|
# message.tool_name = tool_name_value
|
|
# message.plans = plans_value
|
|
# message.parsed_output = parsed_dict
|
|
# message.spec_parsed_output = spec_parsed_dict
|
|
# code_content_value = spec_parsed_dict.get('code')
|
|
# # code_content_value = self._match(r"'code_content':\s*'([^']*)'", content) if "'code_content'" in content else self._match(r'"code_content":\s*"([^"]*)"', content)
|
|
# filename_value = self._match(r"'code_filename':\s*'([^']*)'", content) if "'code_filename'" in content else self._match(r'"code_filename":\s*"([^"]*)"', content)
|
|
# logger.debug(spec_parsed_dict)
|
|
|
|
# if action_value == 'tool_using':
|
|
# tool_params_value = spec_parsed_dict.get('json')
|
|
# else:
|
|
# tool_params_value = None
|
|
# # tool_params_value = self._match(r"'tool_params':\s*(\{[^{}]*\})", content, do_json=True) if "'tool_params'" in content \
|
|
# # else self._match(r'"tool_params":\s*(\{[^{}]*\})', content, do_json=True)
|
|
# tool_name_value = self._match(r"'tool_name':\s*'([^']*)'", content) if "'tool_name'" in content else self._match(r'"tool_name":\s*"([^"]*)"', content)
|
|
# plans_value = self._match(r"'plans':\s*(\[.*?\])", content, do_search=False) if "'plans'" in content else self._match(r'"plans":\s*(\[.*?\])', content, do_search=False, )
|
|
# # re解析
|
|
# message.action_status = action_value or "default"
|
|
# message.code_content = code_content_value
|
|
# message.code_filename = filename_value
|
|
# message.tool_params = tool_params_value
|
|
# message.tool_name = tool_name_value
|
|
# message.plans = plans_value
|
|
# message.parsed_output = parsed_dict
|
|
# message.spec_parsed_output = spec_parsed_dict
|
|
|
|
# # logger.debug(f"确认当前的action: {message.action_status}")
|
|
|
|
# return message
|
|
|
|
# def parser_spec_key(self, content, key, do_search=True, do_json=False) -> str:
|
|
# ''''''
|
|
# key2pattern = {
|
|
# "'action'": r"'action':\s*'([^']*)'", '"action"': r'"action":\s*"([^"]*)"',
|
|
# "'code_content'": r"'code_content':\s*'([^']*)'", '"code_content"': r'"code_content":\s*"([^"]*)"',
|
|
# "'code_filename'": r"'code_filename':\s*'([^']*)'", '"code_filename"': r'"code_filename":\s*"([^"]*)"',
|
|
# "'tool_params'": r"'tool_params':\s*(\{[^{}]*\})", '"tool_params"': r'"tool_params":\s*(\{[^{}]*\})',
|
|
# "'tool_name'": r"'tool_name':\s*'([^']*)'", '"tool_name"': r'"tool_name":\s*"([^"]*)"',
|
|
# "'plans'": r"'plans':\s*(\[.*?\])", '"plans"': r'"plans":\s*(\[.*?\])',
|
|
# "'content'": r"'content':\s*'([^']*)'", '"content"': r'"content":\s*"([^"]*)"',
|
|
# }
|
|
|
|
# s_json = self._parse_json(content)
|
|
# try:
|
|
# if s_json and key in s_json:
|
|
# return str(s_json[key])
|
|
# except:
|
|
# pass
|
|
|
|
# keystr = f"'{key}'" if f"'{key}'" in content else f'"{key}"'
|
|
# return self._match(key2pattern.get(keystr, fr"'{key}':\s*'([^']*)'"), content, do_search=do_search, do_json=do_json)
|
|
|
|
# def _match(self, pattern, s, do_search=True, do_json=False):
|
|
# try:
|
|
# if do_search:
|
|
# match = re.search(pattern, s)
|
|
# if match:
|
|
# value = match.group(1).replace("\\n", "\n")
|
|
# if do_json:
|
|
# value = json.loads(value)
|
|
# else:
|
|
# value = None
|
|
# else:
|
|
# match = re.findall(pattern, s, re.DOTALL)
|
|
# if match:
|
|
# value = match[0]
|
|
# if do_json:
|
|
# value = json.loads(value)
|
|
# else:
|
|
# value = None
|
|
# except Exception as e:
|
|
# logger.warning(f"{traceback.format_exc()}")
|
|
|
|
# # logger.debug(f"pattern: {pattern}, s: {s}, match: {match}")
|
|
# return value
|
|
|
|
# def _parse_json(self, s):
|
|
# try:
|
|
# pattern = r"```([^`]+)```"
|
|
# match = re.findall(pattern, s)
|
|
# if match:
|
|
# return eval(match[0])
|
|
# except:
|
|
# pass
|
|
# return None
|
|
|
|
|
|
def get_memory(self, content_key="role_content"):
|
|
return self.memory.to_tuple_messages(content_key="step_content")
|
|
|
|
def get_memory_str(self, content_key="role_content"):
|
|
return "\n".join([": ".join(i) for i in self.memory.to_tuple_messages(content_key="step_content")]) |