codefuse-chatbot/dev_opsgpt/webui/dialogue.py

222 lines
9.6 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import streamlit as st
from streamlit_chatbox import *
from typing import List, Dict
from datetime import datetime
from .utils import *
from dev_opsgpt.utils import *
from dev_opsgpt.chat.search_chat import SEARCH_ENGINES
chat_box = ChatBox(
assistant_avatar="../sources/imgs/devops-chatbot2.png"
)
GLOBAL_EXE_CODE_TEXT = ""
def get_messages_history(history_len: int) -> List[Dict]:
def filter(msg):
'''
针对当前简单文本对话只返回每条消息的第一个element的内容
'''
content = [x._content for x in msg["elements"] if x._output_method in ["markdown", "text"]]
return {
"role": msg["role"],
"content": content[0] if content else "",
}
history = chat_box.filter_history(100000, filter) # workaround before upgrading streamlit-chatbox.
user_count = 0
i = 1
for i in range(1, len(history) + 1):
if history[-i]["role"] == "user":
user_count += 1
if user_count >= history_len:
break
return history[-i:]
def dialogue_page(api: ApiRequest):
global GLOBAL_EXE_CODE_TEXT
chat_box.init_session()
with st.sidebar:
# TODO: 对话模型与会话绑定
def on_mode_change():
mode = st.session_state.dialogue_mode
text = f"已切换到 {mode} 模式。"
if mode == "知识库问答":
cur_kb = st.session_state.get("selected_kb")
if cur_kb:
text = f"{text} 当前知识库: `{cur_kb}`。"
st.toast(text)
# sac.alert(text, description="descp", type="success", closable=True, banner=True)
dialogue_mode = st.selectbox("请选择对话模式",
["LLM 对话",
"知识库问答",
"搜索引擎问答",
],
on_change=on_mode_change,
key="dialogue_mode",
)
history_len = st.number_input("历史对话轮数:", 0, 10, 3)
# todo: support history len
def on_kb_change():
st.toast(f"已加载知识库: {st.session_state.selected_kb}")
if dialogue_mode == "知识库问答":
with st.expander("知识库配置", True):
kb_list = api.list_knowledge_bases(no_remote_api=True)
selected_kb = st.selectbox(
"请选择知识库:",
kb_list,
on_change=on_kb_change,
key="selected_kb",
)
kb_top_k = st.number_input("匹配知识条数:", 1, 20, 3)
score_threshold = st.number_input("知识匹配分数阈值:", 0.0, float(SCORE_THRESHOLD), float(SCORE_THRESHOLD), float(SCORE_THRESHOLD//100))
# chunk_content = st.checkbox("关联上下文", False, disabled=True)
# chunk_size = st.slider("关联长度:", 0, 500, 250, disabled=True)
elif dialogue_mode == "搜索引擎问答":
with st.expander("搜索引擎配置", True):
search_engine = st.selectbox("请选择搜索引擎", SEARCH_ENGINES.keys(), 0)
se_top_k = st.number_input("匹配搜索结果条数:", 1, 20, 3)
code_interpreter_on = st.toggle("开启代码解释器")
code_exec_on = st.toggle("自动执行代码")
# Display chat messages from history on app rerun
chat_box.output_messages()
chat_input_placeholder = "请输入对话内容换行请使用Ctrl+Enter "
code_text = "" or GLOBAL_EXE_CODE_TEXT
codebox_res = None
if prompt := st.chat_input(chat_input_placeholder, key="prompt"):
history = get_messages_history(history_len)
chat_box.user_say(prompt)
if dialogue_mode == "LLM 对话":
chat_box.ai_say("正在思考...")
text = ""
r = api.chat_chat(prompt, history)
for t in r:
if error_msg := check_error_msg(t): # check whether error occured
st.error(error_msg)
break
text += t["answer"]
chat_box.update_msg(text)
logger.debug(f"text: {text}")
chat_box.update_msg(text, streaming=False) # 更新最终的字符串,去除光标
# 判断是否存在代码, 并提高编辑功能,执行功能
code_text = api.codebox.decode_code_from_text(text)
GLOBAL_EXE_CODE_TEXT = code_text
if code_text and code_exec_on:
codebox_res = api.codebox_chat("```"+code_text+"```", do_code_exe=True)
elif dialogue_mode == "知识库问答":
history = get_messages_history(history_len)
chat_box.ai_say([
f"正在查询知识库 `{selected_kb}` ...",
Markdown("...", in_expander=True, title="知识库匹配结果"),
])
text = ""
for idx_count, d in enumerate(api.knowledge_base_chat(prompt, selected_kb, kb_top_k, score_threshold, history)):
if error_msg := check_error_msg(d): # check whether error occured
st.error(error_msg)
text += d["answer"]
if idx_count%10 == 0:
chat_box.update_msg(text, element_index=0)
# chat_box.update_msg("知识库匹配结果: \n\n".join(d["docs"]), element_index=1, streaming=False, state="complete")
chat_box.update_msg(text, element_index=0, streaming=False) # 更新最终的字符串,去除光标
chat_box.update_msg("知识库匹配结果: \n\n".join(d["docs"]), element_index=1, streaming=False, state="complete")
# 判断是否存在代码, 并提高编辑功能,执行功能
code_text = api.codebox.decode_code_from_text(text)
GLOBAL_EXE_CODE_TEXT = code_text
if code_text and code_exec_on:
codebox_res = api.codebox_chat("```"+code_text+"```", do_code_exe=True)
elif dialogue_mode == "搜索引擎问答":
chat_box.ai_say([
f"正在执行 `{search_engine}` 搜索...",
Markdown("...", in_expander=True, title="网络搜索结果"),
])
text = ""
d = {"docs": []}
for d in api.search_engine_chat(prompt, search_engine, se_top_k):
if error_msg := check_error_msg(d): # check whether error occured
st.error(error_msg)
text += d["answer"]
if idx_count%10 == 0:
chat_box.update_msg(text, element_index=0)
# chat_box.update_msg("搜索匹配结果: \n\n".join(d["docs"]), element_index=1, streaming=False)
chat_box.update_msg(text, element_index=0, streaming=False) # 更新最终的字符串,去除光标
chat_box.update_msg("搜索匹配结果: \n\n".join(d["docs"]), element_index=1, streaming=False, state="complete")
# 判断是否存在代码, 并提高编辑功能,执行功能
code_text = api.codebox.decode_code_from_text(text)
GLOBAL_EXE_CODE_TEXT = code_text
if code_text and code_exec_on:
codebox_res = api.codebox_chat("```"+code_text+"```", do_code_exe=True)
if code_interpreter_on:
with st.expander("代码编辑执行器", False):
code_part = st.text_area("代码片段", code_text, key="code_text")
cols = st.columns(2)
if cols[0].button(
"修改对话",
use_container_width=True,
):
code_text = code_part
GLOBAL_EXE_CODE_TEXT = code_text
st.toast("修改对话成功")
if cols[1].button(
"执行代码",
use_container_width=True
):
if code_text:
codebox_res = api.codebox_chat("```"+code_text+"```", do_code_exe=True)
st.toast("正在执行代码")
else:
st.toast("code 不能为空")
#TODO 这段信息会被记录到history里
if codebox_res is not None and codebox_res.code_exe_status != 200:
st.toast(f"{codebox_res.code_exe_response}")
if codebox_res is not None and codebox_res.code_exe_status == 200:
st.toast(f"codebox_chajt {codebox_res}")
chat_box.ai_say(Markdown(code_text, in_expander=True, title="code interpreter", unsafe_allow_html=True), )
if codebox_res.code_exe_type == "image/png":
base_text = f"```\n{code_text}\n```\n\n"
img_html = "<img src='data:image/png;base64,{}' class='img-fluid'>".format(
codebox_res.code_exe_response
)
chat_box.update_msg(base_text + img_html, streaming=False, state="complete")
else:
chat_box.update_msg('```\n'+code_text+'\n```'+"\n\n"+'```\n'+codebox_res.code_exe_response+'\n```',
streaming=False, state="complete")
now = datetime.now()
with st.sidebar:
cols = st.columns(2)
export_btn = cols[0]
if cols[1].button(
"清空对话",
use_container_width=True,
):
chat_box.reset_history()
GLOBAL_EXE_CODE_TEXT = ""
st.experimental_rerun()
export_btn.download_button(
"导出记录",
"".join(chat_box.export2md()),
file_name=f"{now:%Y-%m-%d %H.%M}_对话记录.md",
mime="text/markdown",
use_container_width=True,
)