182 lines
5.9 KiB
Python
182 lines
5.9 KiB
Python
import nltk
|
||
import argparse
|
||
import uvicorn, os, sys
|
||
from fastapi.middleware.cors import CORSMiddleware
|
||
from starlette.responses import RedirectResponse
|
||
from typing import List
|
||
|
||
src_dir = os.path.join(
|
||
os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||
)
|
||
sys.path.append(src_dir)
|
||
|
||
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
|
||
|
||
from configs import VERSION
|
||
from configs.model_config import NLTK_DATA_PATH
|
||
from configs.server_config import OPEN_CROSS_DOMAIN
|
||
|
||
from dev_opsgpt.chat import LLMChat, SearchChat, KnowledgeChat
|
||
from dev_opsgpt.service.kb_api import *
|
||
from dev_opsgpt.utils.server_utils import BaseResponse, ListResponse, FastAPI, MakeFastAPIOffline
|
||
|
||
nltk.data.path = [NLTK_DATA_PATH] + nltk.data.path
|
||
|
||
from dev_opsgpt.chat import LLMChat, SearchChat, KnowledgeChat
|
||
|
||
llmChat = LLMChat()
|
||
searchChat = SearchChat()
|
||
knowledgeChat = KnowledgeChat()
|
||
|
||
|
||
async def document():
|
||
return RedirectResponse(url="/docs")
|
||
|
||
|
||
def create_app():
|
||
app = FastAPI(
|
||
title="DevOps-ChatBot API Server",
|
||
version=VERSION
|
||
)
|
||
MakeFastAPIOffline(app)
|
||
# Add CORS middleware to allow all origins
|
||
# 在config.py中设置OPEN_DOMAIN=True,允许跨域
|
||
# set OPEN_DOMAIN=True in config.py to allow cross-domain
|
||
if OPEN_CROSS_DOMAIN:
|
||
app.add_middleware(
|
||
CORSMiddleware,
|
||
allow_origins=["*"],
|
||
allow_credentials=True,
|
||
allow_methods=["*"],
|
||
allow_headers=["*"],
|
||
)
|
||
|
||
app.get("/",
|
||
response_model=BaseResponse,
|
||
summary="swagger 文档")(document)
|
||
|
||
# Tag: Chat
|
||
# app.post("/chat/fastchat",
|
||
# tags=["Chat"],
|
||
# summary="与llm模型对话(直接与fastchat api对话)")(openai_chat)
|
||
|
||
app.post("/chat/chat",
|
||
tags=["Chat"],
|
||
summary="与llm模型对话(通过LLMChain)")(llmChat.chat)
|
||
|
||
app.post("/chat/knowledge_base_chat",
|
||
tags=["Chat"],
|
||
summary="与知识库对话")(knowledgeChat.chat)
|
||
|
||
app.post("/chat/search_engine_chat",
|
||
tags=["Chat"],
|
||
summary="与搜索引擎对话")(searchChat.chat)
|
||
|
||
# Tag: Knowledge Base Management
|
||
app.get("/knowledge_base/list_knowledge_bases",
|
||
tags=["Knowledge Base Management"],
|
||
response_model=ListResponse,
|
||
summary="获取知识库列表")(list_kbs)
|
||
|
||
app.post("/knowledge_base/create_knowledge_base",
|
||
tags=["Knowledge Base Management"],
|
||
response_model=BaseResponse,
|
||
summary="创建知识库"
|
||
)(create_kb)
|
||
|
||
app.post("/knowledge_base/delete_knowledge_base",
|
||
tags=["Knowledge Base Management"],
|
||
response_model=BaseResponse,
|
||
summary="删除知识库"
|
||
)(delete_kb)
|
||
|
||
app.get("/knowledge_base/list_files",
|
||
tags=["Knowledge Base Management"],
|
||
response_model=ListResponse,
|
||
summary="获取知识库内的文件列表"
|
||
)(list_docs)
|
||
|
||
app.post("/knowledge_base/search_docs",
|
||
tags=["Knowledge Base Management"],
|
||
response_model=List[DocumentWithScore],
|
||
summary="搜索知识库"
|
||
)(search_docs)
|
||
|
||
app.post("/knowledge_base/upload_docs",
|
||
tags=["Knowledge Base Management"],
|
||
response_model=BaseResponse,
|
||
summary="上传文件到知识库,并/或进行向量化"
|
||
)(upload_doc)
|
||
|
||
app.post("/knowledge_base/delete_docs",
|
||
tags=["Knowledge Base Management"],
|
||
response_model=BaseResponse,
|
||
summary="删除知识库内指定文件"
|
||
)(delete_doc)
|
||
|
||
app.post("/knowledge_base/update_docs",
|
||
tags=["Knowledge Base Management"],
|
||
response_model=BaseResponse,
|
||
summary="更新现有文件到知识库"
|
||
)(update_doc)
|
||
|
||
app.get("/knowledge_base/download_doc",
|
||
tags=["Knowledge Base Management"],
|
||
summary="下载对应的知识文件")(download_doc)
|
||
|
||
app.post("/knowledge_base/recreate_vector_store",
|
||
tags=["Knowledge Base Management"],
|
||
summary="根据content中文档重建向量库,流式输出处理进度。"
|
||
)(recreate_vector_store)
|
||
|
||
# # LLM模型相关接口
|
||
# app.post("/llm_model/list_models",
|
||
# tags=["LLM Model Management"],
|
||
# summary="列出当前已加载的模型",
|
||
# )(list_llm_models)
|
||
|
||
# app.post("/llm_model/stop",
|
||
# tags=["LLM Model Management"],
|
||
# summary="停止指定的LLM模型(Model Worker)",
|
||
# )(stop_llm_model)
|
||
|
||
# app.post("/llm_model/change",
|
||
# tags=["LLM Model Management"],
|
||
# summary="切换指定的LLM模型(Model Worker)",
|
||
# )(change_llm_model)
|
||
|
||
return app
|
||
|
||
|
||
app = create_app()
|
||
|
||
|
||
def run_api(host, port, **kwargs):
|
||
if kwargs.get("ssl_keyfile") and kwargs.get("ssl_certfile"):
|
||
uvicorn.run(app,
|
||
host=host,
|
||
port=port,
|
||
ssl_keyfile=kwargs.get("ssl_keyfile"),
|
||
ssl_certfile=kwargs.get("ssl_certfile"),
|
||
)
|
||
else:
|
||
uvicorn.run(app, host=host, port=port)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
parser = argparse.ArgumentParser(prog='DevOps-ChatBot',
|
||
description='About DevOps-ChatBot, local knowledge based LLM with langchain'
|
||
' | 基于本地知识库的 LLM 问答')
|
||
parser.add_argument("--host", type=str, default="0.0.0.0")
|
||
parser.add_argument("--port", type=int, default=7861)
|
||
parser.add_argument("--ssl_keyfile", type=str)
|
||
parser.add_argument("--ssl_certfile", type=str)
|
||
# 初始化消息
|
||
args = parser.parse_args()
|
||
args_dict = vars(args)
|
||
run_api(host=args.host,
|
||
port=args.port,
|
||
ssl_keyfile=args.ssl_keyfile,
|
||
ssl_certfile=args.ssl_certfile,
|
||
)
|