266 lines
10 KiB
Plaintext
266 lines
10 KiB
Plaintext
import os
|
||
import sys
|
||
import logging
|
||
import torch
|
||
import openai
|
||
import base64
|
||
from .utils import is_running_in_docker
|
||
# 日志格式
|
||
LOG_FORMAT = "%(asctime)s - %(filename)s[line:%(lineno)d] - %(levelname)s: %(message)s"
|
||
logger = logging.getLogger()
|
||
logger.setLevel(logging.INFO)
|
||
logging.basicConfig(format=LOG_FORMAT)
|
||
|
||
# os.environ["OPENAI_PROXY"] = "socks5h://127.0.0.1:13659"
|
||
os.environ["API_BASE_URL"] = "http://openai.com/v1/chat/completions"
|
||
os.environ["OPENAI_API_KEY"] = ""
|
||
os.environ["DUCKDUCKGO_PROXY"] = os.environ.get("DUCKDUCKGO_PROXY") or "socks5://127.0.0.1:13659"
|
||
os.environ["BAIDU_OCR_API_KEY"] = ""
|
||
os.environ["BAIDU_OCR_SECRET_KEY"] = ""
|
||
|
||
import platform
|
||
system_name = platform.system()
|
||
|
||
# 在以下字典中修改属性值,以指定本地embedding模型存储位置
|
||
# 如将 "text2vec": "GanymedeNil/text2vec-large-chinese" 修改为 "text2vec": "User/Downloads/text2vec-large-chinese"
|
||
# 此处请写绝对路径
|
||
embedding_model_dict = {
|
||
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
|
||
"ernie-base": "nghuyong/ernie-3.0-base-zh",
|
||
"text2vec-base": "shibing624/text2vec-base-chinese",
|
||
"text2vec": "GanymedeNil/text2vec-large-chinese",
|
||
"text2vec-paraphrase": "shibing624/text2vec-base-chinese-paraphrase",
|
||
"text2vec-sentence": "shibing624/text2vec-base-chinese-sentence",
|
||
"text2vec-multilingual": "shibing624/text2vec-base-multilingual",
|
||
"m3e-small": "moka-ai/m3e-small",
|
||
"m3e-base": "moka-ai/m3e-base",
|
||
"m3e-large": "moka-ai/m3e-large",
|
||
"bge-small-zh": "BAAI/bge-small-zh",
|
||
"bge-base-zh": "BAAI/bge-base-zh",
|
||
"bge-large-zh": "BAAI/bge-large-zh"
|
||
}
|
||
|
||
|
||
LOCAL_MODEL_DIR = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "embedding_models")
|
||
embedding_model_dict = {k: f"/home/user/chatbot/embedding_models/{v}" if is_running_in_docker() else f"{LOCAL_MODEL_DIR}/{v}" for k, v in embedding_model_dict.items()}
|
||
|
||
# 选用的 Embedding 名称
|
||
EMBEDDING_ENGINE = 'openai'
|
||
EMBEDDING_MODEL = "text2vec-base"
|
||
|
||
# Embedding 模型运行设备
|
||
EMBEDDING_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
||
|
||
ONLINE_LLM_MODEL = {
|
||
# 线上模型。请在server_config中为每个在线API设置不同的端口
|
||
|
||
"openai-api": {
|
||
"model_name": "gpt-3.5-turbo",
|
||
"api_base_url": "https://api.openai.com/v1",
|
||
"api_key": "",
|
||
"openai_proxy": "",
|
||
},
|
||
"example": {
|
||
"version": "gpt-3.5", # 采用openai接口做示例
|
||
"api_base_url": "https://api.openai.com/v1",
|
||
"api_key": "",
|
||
"provider": "ExampleWorker",
|
||
},
|
||
}
|
||
|
||
# 建议使用chat模型,不要使用base,无法获取正确输出
|
||
llm_model_dict = {
|
||
"chatglm-6b": {
|
||
"local_model_path": "THUDM/chatglm-6b",
|
||
"api_base_url": "http://localhost:8888/v1", # "name"修改为fastchat服务中的"api_base_url"
|
||
"api_key": "EMPTY"
|
||
},
|
||
# 以下模型经过测试可接入,配置仿照上述即可
|
||
# 'codellama_34b', 'Baichuan2-13B-Base', 'Baichuan2-13B-Chat', 'baichuan2-7b-base', 'baichuan2-7b-chat',
|
||
# 'internlm-7b-base', 'internlm-chat-7b', 'chatglm2-6b', 'qwen-14b-base', 'qwen-14b-chat', 'qwen-1-8B-Chat',
|
||
# 'Qwen-7B', 'Qwen-7B-Chat', 'qwen-7b-base-v1.1', 'qwen-7b-chat-v1.1', 'chatglm3-6b', 'chatglm3-6b-32k',
|
||
# 'chatglm3-6b-base', 'Qwen-72B-Chat-Int4'
|
||
# 调用chatgpt时如果报出: urllib3.exceptions.MaxRetryError: HTTPSConnectionPool(host='api.openai.com', port=443):
|
||
# Max retries exceeded with url: /v1/chat/completions
|
||
# 则需要将urllib3版本修改为1.25.11
|
||
# 如果依然报urllib3.exceptions.MaxRetryError: HTTPSConnectionPool,则将https改为http
|
||
# 参考https://zhuanlan.zhihu.com/p/350015032
|
||
|
||
# 如果报出:raise NewConnectionError(
|
||
# urllib3.exceptions.NewConnectionError: <urllib3.connection.HTTPSConnection object at 0x000001FE4BDB85E0>:
|
||
# Failed to establish a new connection: [WinError 10060]
|
||
# 则是因为内地和香港的IP都被OPENAI封了,需要切换为日本、新加坡等地
|
||
"gpt-3.5-turbo": {
|
||
"local_model_path": "gpt-3.5-turbo",
|
||
"api_base_url": os.environ.get("API_BASE_URL"),
|
||
"api_key": os.environ.get("OPENAI_API_KEY")
|
||
},
|
||
"gpt-3.5-turbo-16k": {
|
||
"local_model_path": "gpt-3.5-turbo-16k",
|
||
"api_base_url": os.environ.get("API_BASE_URL"),
|
||
"api_key": os.environ.get("OPENAI_API_KEY")
|
||
},
|
||
}
|
||
|
||
# 建议使用chat模型,不要使用base,无法获取正确输出
|
||
VLLM_MODEL_DICT = {
|
||
'chatglm2-6b': "THUDM/chatglm-6b",
|
||
}
|
||
# 以下模型经过测试可接入,配置仿照上述即可
|
||
# 'codellama_34b', 'Baichuan2-13B-Base', 'Baichuan2-13B-Chat', 'baichuan2-7b-base', 'baichuan2-7b-chat',
|
||
# 'internlm-7b-base', 'internlm-chat-7b', 'chatglm2-6b', 'qwen-14b-base', 'qwen-14b-chat', 'qwen-1-8B-Chat',
|
||
# 'Qwen-7B', 'Qwen-7B-Chat', 'qwen-7b-base-v1.1', 'qwen-7b-chat-v1.1', 'chatglm3-6b', 'chatglm3-6b-32k',
|
||
# 'chatglm3-6b-base', 'Qwen-72B-Chat-Int4'
|
||
|
||
|
||
LOCAL_LLM_MODEL_DIR = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "llm_models")
|
||
# 若不想修改模型地址,可取消相关地址设置
|
||
llm_model_dict_c = {}
|
||
for k, v in llm_model_dict.items():
|
||
v_c = {}
|
||
for kk, vv in v.items():
|
||
if k=="local_model_path":
|
||
v_c[kk] = f"/home/user/chatbot/llm_models/{vv}" if is_running_in_docker() else f"{LOCAL_LLM_MODEL_DIR}/{vv}"
|
||
else:
|
||
v_c[kk] = vv
|
||
llm_model_dict_c[k] = v_c
|
||
|
||
llm_model_dict = llm_model_dict_c
|
||
# 若不想修改模型地址,可取消相关地址设置
|
||
VLLM_MODEL_DICT_c = {}
|
||
for k, v in VLLM_MODEL_DICT.items():
|
||
VLLM_MODEL_DICT_c[k] = f"/home/user/chatbot/llm_models/{v}" if is_running_in_docker() else f"{LOCAL_LLM_MODEL_DIR}/{v}"
|
||
VLLM_MODEL_DICT = VLLM_MODEL_DICT_c
|
||
|
||
|
||
# LLM 名称
|
||
# EMBEDDING_ENGINE = 'openai'
|
||
EMBEDDING_ENGINE = 'model'
|
||
EMBEDDING_MODEL = "text2vec-base"
|
||
# LLM_MODEL = "gpt-4"
|
||
LLM_MODEL = "gpt-3.5-turbo-16k"
|
||
LLM_MODELs = ["gpt-3.5-turbo-16k"]
|
||
USE_FASTCHAT = "gpt" not in LLM_MODEL # 判断是否进行fastchat
|
||
|
||
# LLM 运行设备
|
||
LLM_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
||
|
||
# 日志存储路径
|
||
LOG_PATH = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "logs")
|
||
if not os.path.exists(LOG_PATH):
|
||
os.mkdir(LOG_PATH)
|
||
|
||
# 知识库默认存储路径
|
||
SOURCE_PATH = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "sources")
|
||
|
||
# 知识库默认存储路径
|
||
KB_ROOT_PATH = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "knowledge_base")
|
||
|
||
# 代码库默认存储路径
|
||
CB_ROOT_PATH = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "code_base")
|
||
|
||
# nltk 模型存储路径
|
||
NLTK_DATA_PATH = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "nltk_data")
|
||
|
||
# 代码存储路径
|
||
JUPYTER_WORK_PATH = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "jupyter_work")
|
||
|
||
# WEB_CRAWL存储路径
|
||
WEB_CRAWL_PATH = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "knowledge_base")
|
||
|
||
# NEBULA_DATA存储路径
|
||
NELUBA_PATH = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "data/neluba_data")
|
||
|
||
for _path in [LOG_PATH, SOURCE_PATH, KB_ROOT_PATH, NLTK_DATA_PATH, JUPYTER_WORK_PATH, WEB_CRAWL_PATH, NELUBA_PATH]:
|
||
if not os.path.exists(_path):
|
||
os.makedirs(_path, exist_ok=True)
|
||
|
||
# 数据库默认存储路径。
|
||
# 如果使用sqlite,可以直接修改DB_ROOT_PATH;如果使用其它数据库,请直接修改SQLALCHEMY_DATABASE_URI。
|
||
DB_ROOT_PATH = os.path.join(KB_ROOT_PATH, "info.db")
|
||
SQLALCHEMY_DATABASE_URI = f"sqlite:///{DB_ROOT_PATH}"
|
||
|
||
# 可选向量库类型及对应配置
|
||
kbs_config = {
|
||
"faiss": {
|
||
},
|
||
# "milvus": {
|
||
# "host": "127.0.0.1",
|
||
# "port": "19530",
|
||
# "user": "",
|
||
# "password": "",
|
||
# "secure": False,
|
||
# },
|
||
# "pg": {
|
||
# "connection_uri": "postgresql://postgres:postgres@127.0.0.1:5432/langchain_chatchat",
|
||
# }
|
||
}
|
||
|
||
# 默认向量库类型。可选:faiss, milvus, pg.
|
||
DEFAULT_VS_TYPE = "faiss"
|
||
|
||
# 缓存向量库数量
|
||
CACHED_VS_NUM = 1
|
||
|
||
# 知识库中单段文本长度
|
||
CHUNK_SIZE = 500
|
||
|
||
# 知识库中相邻文本重合长度
|
||
OVERLAP_SIZE = 50
|
||
|
||
# 知识库匹配向量数量
|
||
VECTOR_SEARCH_TOP_K = 5
|
||
|
||
# 知识库匹配相关度阈值,取值范围在0-1之间,SCORE越小,相关度越高,取到1相当于不筛选,建议设置在0.5左右
|
||
# Mac 可能存在无法使用normalized_L2的问题,因此调整SCORE_THRESHOLD至 0~1100
|
||
FAISS_NORMALIZE_L2 = True if system_name in ["Linux", "Windows"] else False
|
||
SCORE_THRESHOLD = 1 if system_name in ["Linux", "Windows"] else 1100
|
||
|
||
# 搜索引擎匹配结题数量
|
||
SEARCH_ENGINE_TOP_K = 5
|
||
|
||
# 代码引擎匹配结题数量
|
||
CODE_SEARCH_TOP_K = 1
|
||
|
||
# 基于本地知识问答的提示词模版
|
||
PROMPT_TEMPLATE = """【指令】根据已知信息,简洁和专业的来回答问题。如果无法从中得到答案,请说 “根据已知信息无法回答该问题”,不允许在答案中添加编造成分,答案请使用中文。
|
||
|
||
【已知信息】{context}
|
||
|
||
【问题】{question}"""
|
||
|
||
# 基于本地代码知识问答的提示词模版
|
||
CODE_PROMPT_TEMPLATE = """【指令】根据已知信息来回答问题。
|
||
|
||
【已知信息】{context}
|
||
|
||
【问题】{question}"""
|
||
|
||
# 代码解释模版
|
||
CODE_INTERPERT_TEMPLATE = '''{code}
|
||
|
||
解释一下这段代码'''
|
||
|
||
# API 是否开启跨域,默认为False,如果需要开启,请设置为True
|
||
# is open cross domain
|
||
OPEN_CROSS_DOMAIN = False
|
||
|
||
# Bing 搜索必备变量
|
||
# 使用 Bing 搜索需要使用 Bing Subscription Key,需要在azure port中申请试用bing search
|
||
# 具体申请方式请见
|
||
# https://learn.microsoft.com/en-us/bing/search-apis/bing-web-search/create-bing-search-service-resource
|
||
# 使用python创建bing api 搜索实例详见:
|
||
# https://learn.microsoft.com/en-us/bing/search-apis/bing-web-search/quickstarts/rest/python
|
||
BING_SEARCH_URL = "https://api.bing.microsoft.com/v7.0/search"
|
||
# 注意不是bing Webmaster Tools的api key,
|
||
|
||
# 此外,如果是在服务器上,报Failed to establish a new connection: [Errno 110] Connection timed out
|
||
# 是因为服务器加了防火墙,需要联系管理员加白名单,如果公司的服务器的话,就别想了GG
|
||
BING_SUBSCRIPTION_KEY = ""
|
||
|
||
# 是否开启中文标题加强,以及标题增强的相关配置
|
||
# 通过增加标题判断,判断哪些文本为标题,并在metadata中进行标记;
|
||
# 然后将文本与往上一级的标题进行拼合,实现文本信息的增强。
|
||
ZH_TITLE_ENHANCE = False
|
||
|
||
log_verbose = False |