378 lines
15 KiB
Python
378 lines
15 KiB
Python
import streamlit as st
|
||
import os
|
||
import time
|
||
import traceback
|
||
from typing import Literal, Dict, Tuple
|
||
from st_aggrid import AgGrid, JsCode
|
||
from st_aggrid.grid_options_builder import GridOptionsBuilder
|
||
import pandas as pd
|
||
|
||
from .utils import *
|
||
from coagent.utils.path_utils import *
|
||
from coagent.service.service_factory import get_kb_details, get_kb_doc_details
|
||
from coagent.orm import table_init
|
||
|
||
from configs.model_config import (
|
||
KB_ROOT_PATH, kbs_config, DEFAULT_VS_TYPE, WEB_CRAWL_PATH,
|
||
EMBEDDING_DEVICE, EMBEDDING_ENGINE, EMBEDDING_MODEL, embedding_model_dict,
|
||
llm_model_dict
|
||
)
|
||
|
||
# SENTENCE_SIZE = 100
|
||
|
||
cell_renderer = JsCode("""function(params) {if(params.value==true){return '✓'}else{return '×'}}""")
|
||
|
||
|
||
def config_aggrid(
|
||
df: pd.DataFrame,
|
||
columns: Dict[Tuple[str, str], Dict] = {},
|
||
selection_mode: Literal["single", "multiple", "disabled"] = "single",
|
||
use_checkbox: bool = False,
|
||
) -> GridOptionsBuilder:
|
||
gb = GridOptionsBuilder.from_dataframe(df)
|
||
gb.configure_column("No", width=40)
|
||
for (col, header), kw in columns.items():
|
||
gb.configure_column(col, header, wrapHeaderText=True, **kw)
|
||
gb.configure_selection(
|
||
selection_mode=selection_mode,
|
||
use_checkbox=use_checkbox,
|
||
# pre_selected_rows=st.session_state.get("selected_rows", [0]),
|
||
)
|
||
return gb
|
||
|
||
|
||
def file_exists(kb: str, selected_rows: List) -> Tuple[str, str]:
|
||
'''
|
||
check whether a doc file exists in local knowledge base folder.
|
||
return the file's name and path if it exists.
|
||
'''
|
||
if selected_rows:
|
||
file_name = selected_rows[0]["file_name"]
|
||
file_path = get_file_path(kb, file_name, KB_ROOT_PATH)
|
||
if os.path.isfile(file_path):
|
||
return file_name, file_path
|
||
return "", ""
|
||
|
||
|
||
def knowledge_page(
|
||
api: ApiRequest,
|
||
embedding_model_dict: dict = embedding_model_dict,
|
||
kbs_config: dict = kbs_config,
|
||
embedding_model: str = EMBEDDING_MODEL,
|
||
default_vs_type: str = DEFAULT_VS_TYPE,
|
||
web_crawl_path: str = WEB_CRAWL_PATH
|
||
):
|
||
# 判断表是否存在并进行初始化
|
||
table_init()
|
||
|
||
try:
|
||
kb_list = {x["kb_name"]: x for x in get_kb_details(KB_ROOT_PATH)}
|
||
except Exception as e:
|
||
st.error("获取知识库信息错误,请检查是否已按照 `README.md` 中 `4 知识库初始化与迁移` 步骤完成初始化或迁移,或是否为数据库连接错误。")
|
||
st.stop()
|
||
kb_names = list(kb_list.keys())
|
||
|
||
if "selected_kb_name" in st.session_state and st.session_state["selected_kb_name"] in kb_names:
|
||
selected_kb_index = kb_names.index(st.session_state["selected_kb_name"])
|
||
else:
|
||
selected_kb_index = 0
|
||
|
||
def format_selected_kb(kb_name: str) -> str:
|
||
if kb := kb_list.get(kb_name):
|
||
return f"{kb_name} ({kb['vs_type']} @ {kb['embed_model']})"
|
||
else:
|
||
return kb_name
|
||
|
||
selected_kb = st.selectbox(
|
||
"请选择或新建知识库:",
|
||
kb_names + ["新建知识库"],
|
||
format_func=format_selected_kb,
|
||
index=selected_kb_index
|
||
)
|
||
|
||
if selected_kb == "新建知识库":
|
||
with st.form("新建知识库"):
|
||
|
||
kb_name = st.text_input(
|
||
"新建知识库名称",
|
||
placeholder="新知识库名称,不支持中文命名",
|
||
key="kb_name",
|
||
)
|
||
|
||
cols = st.columns(2)
|
||
|
||
vs_types = list(kbs_config.keys())
|
||
vs_type = cols[0].selectbox(
|
||
"向量库类型",
|
||
vs_types,
|
||
index=vs_types.index(default_vs_type),
|
||
key="vs_type",
|
||
)
|
||
|
||
embed_models = list(embedding_model_dict.keys())
|
||
|
||
embed_model = cols[1].selectbox(
|
||
"Embedding 模型",
|
||
embed_models,
|
||
index=embed_models.index(embedding_model),
|
||
key="embed_model",
|
||
)
|
||
|
||
submit_create_kb = st.form_submit_button(
|
||
"新建",
|
||
# disabled=not bool(kb_name),
|
||
use_container_width=True,
|
||
)
|
||
|
||
if submit_create_kb:
|
||
if not kb_name or not kb_name.strip():
|
||
st.error(f"知识库名称不能为空!")
|
||
elif kb_name in kb_list:
|
||
st.error(f"名为 {kb_name} 的知识库已经存在!")
|
||
else:
|
||
ret = api.create_knowledge_base(
|
||
knowledge_base_name=kb_name,
|
||
vector_store_type=vs_type,
|
||
embed_model=embed_model,
|
||
embed_engine=EMBEDDING_ENGINE,
|
||
embedding_device= EMBEDDING_DEVICE,
|
||
embed_model_path=embedding_model_dict[embed_model],
|
||
api_key=llm_model_dict[LLM_MODEL]["api_key"],
|
||
api_base_url=llm_model_dict[LLM_MODEL]["api_base_url"],
|
||
)
|
||
st.toast(ret.get("msg", " "))
|
||
st.session_state["selected_kb_name"] = kb_name
|
||
st.experimental_rerun()
|
||
|
||
elif selected_kb:
|
||
kb = selected_kb
|
||
|
||
# 上传文件
|
||
# sentence_size = st.slider("文本入库分句长度限制", 1, 1000, SENTENCE_SIZE, disabled=True)
|
||
files = st.file_uploader("上传知识文件",
|
||
[i for ls in LOADER2EXT_DICT.values() for i in ls],
|
||
accept_multiple_files=True,
|
||
)
|
||
|
||
if st.button(
|
||
"添加文件到知识库",
|
||
# help="请先上传文件,再点击添加",
|
||
# use_container_width=True,
|
||
disabled=len(files) == 0,
|
||
):
|
||
data = [{"file": f, "knowledge_base_name": kb, "not_refresh_vs_cache": True, "embed_model": EMBEDDING_MODEL,
|
||
"embed_model_path": embedding_model_dict[EMBEDDING_MODEL],
|
||
"model_device": EMBEDDING_DEVICE,
|
||
"embed_engine": EMBEDDING_ENGINE,
|
||
"api_key": llm_model_dict[LLM_MODEL]["api_key"],
|
||
"api_base_url": llm_model_dict[LLM_MODEL]["api_base_url"],
|
||
}
|
||
for f in files]
|
||
data[-1]["not_refresh_vs_cache"]=False
|
||
for k in data:
|
||
pass
|
||
ret = api.upload_kb_doc(**k)
|
||
if msg := check_success_msg(ret):
|
||
st.toast(msg, icon="✔")
|
||
elif msg := check_error_msg(ret):
|
||
st.toast(msg, icon="✖")
|
||
st.session_state.files = []
|
||
|
||
base_url = st.text_input(
|
||
"待获取内容的URL地址",
|
||
placeholder="请填写正确可打开的URL地址",
|
||
key="base_url",
|
||
)
|
||
|
||
|
||
if st.button(
|
||
"添加URL内容到知识库",
|
||
disabled= base_url is None or base_url=="",
|
||
):
|
||
filename = base_url.replace("https://", " ").\
|
||
replace("http://", " ").replace("/", " ").\
|
||
replace("?", " ").replace("=", " ").replace(".", " ").strip()
|
||
html_name = "_".join(filename.split(" ",) + ["html.jsonl"])
|
||
text_name = "_".join(filename.split(" ",) + ["text.jsonl"])
|
||
html_path = os.path.join(web_crawl_path, html_name,)
|
||
text_path = os.path.join(web_crawl_path, text_name,)
|
||
# if not os.path.exists(text_dir) or :
|
||
st.toast(base_url)
|
||
st.toast(html_path)
|
||
st.toast(text_path)
|
||
res = api.web_crawl(
|
||
base_url=base_url,
|
||
html_dir=html_path,
|
||
text_dir=text_path,
|
||
do_dfs = False,
|
||
reptile_lib="requests",
|
||
method="get",
|
||
time_sleep=2,
|
||
)
|
||
|
||
if res["status"] == 200:
|
||
st.toast(res["response"], icon="✔")
|
||
data = [{"file": text_path, "filename": text_name, "knowledge_base_name": kb, "not_refresh_vs_cache": False,
|
||
"embed_model": EMBEDDING_MODEL,
|
||
"embed_model_path": embedding_model_dict[EMBEDDING_MODEL],
|
||
"model_device": EMBEDDING_DEVICE,
|
||
"embed_engine": EMBEDDING_ENGINE,
|
||
"api_key": llm_model_dict[LLM_MODEL]["api_key"],
|
||
"api_base_url": llm_model_dict[LLM_MODEL]["api_base_url"],}]
|
||
for k in data:
|
||
ret = api.upload_kb_doc(**k)
|
||
logger.info(ret)
|
||
if msg := check_success_msg(ret):
|
||
st.toast(msg, icon="✔")
|
||
elif msg := check_error_msg(ret):
|
||
st.toast(msg, icon="✖")
|
||
st.session_state.files = []
|
||
else:
|
||
st.toast(res["response"], icon="✖")
|
||
|
||
if os.path.exists(html_path):
|
||
os.remove(html_path)
|
||
|
||
st.divider()
|
||
|
||
# 知识库详情
|
||
# st.info("请选择文件,点击按钮进行操作。")
|
||
doc_details = pd.DataFrame(get_kb_doc_details(kb, KB_ROOT_PATH))
|
||
if not len(doc_details):
|
||
st.info(f"知识库 `{kb}` 中暂无文件")
|
||
else:
|
||
st.write(f"知识库 `{kb}` 中已有文件:")
|
||
st.info("知识库中包含源文件与向量库,请从下表中选择文件后操作")
|
||
doc_details.drop(columns=["kb_name"], inplace=True)
|
||
doc_details = doc_details[[
|
||
"No", "file_name", "document_loader", "text_splitter", "in_folder", "in_db",
|
||
]]
|
||
# doc_details["in_folder"] = doc_details["in_folder"].replace(True, "✓").replace(False, "×")
|
||
# doc_details["in_db"] = doc_details["in_db"].replace(True, "✓").replace(False, "×")
|
||
gb = config_aggrid(
|
||
doc_details,
|
||
{
|
||
("No", "序号"): {},
|
||
("file_name", "文档名称"): {},
|
||
# ("file_ext", "文档类型"): {},
|
||
# ("file_version", "文档版本"): {},
|
||
("document_loader", "文档加载器"): {},
|
||
("text_splitter", "分词器"): {},
|
||
# ("create_time", "创建时间"): {},
|
||
("in_folder", "源文件"): {"cellRenderer": cell_renderer},
|
||
("in_db", "向量库"): {"cellRenderer": cell_renderer},
|
||
},
|
||
"multiple",
|
||
)
|
||
|
||
doc_grid = AgGrid(
|
||
doc_details,
|
||
gb.build(),
|
||
columns_auto_size_mode="FIT_CONTENTS",
|
||
theme="alpine",
|
||
custom_css={
|
||
"#gridToolBar": {"display": "none"},
|
||
},
|
||
allow_unsafe_jscode=True
|
||
)
|
||
|
||
selected_rows = doc_grid.get("selected_rows", [])
|
||
|
||
cols = st.columns(4)
|
||
file_name, file_path = file_exists(kb, selected_rows)
|
||
if file_path:
|
||
with open(file_path, "rb") as fp:
|
||
cols[0].download_button(
|
||
"下载选中文档",
|
||
fp,
|
||
file_name=file_name,
|
||
use_container_width=True, )
|
||
else:
|
||
cols[0].download_button(
|
||
"下载选中文档",
|
||
"",
|
||
disabled=True,
|
||
use_container_width=True, )
|
||
|
||
st.write()
|
||
# 将文件分词并加载到向量库中
|
||
if cols[1].button(
|
||
"重新添加至向量库" if selected_rows and (pd.DataFrame(selected_rows)["in_db"]).any() else "添加至向量库",
|
||
disabled=not file_exists(kb, selected_rows)[0],
|
||
use_container_width=True,
|
||
):
|
||
for row in selected_rows:
|
||
api.update_kb_doc(kb, row["file_name"],
|
||
embed_engine=EMBEDDING_ENGINE,embed_model=EMBEDDING_MODEL,
|
||
embed_model_path=embedding_model_dict[EMBEDDING_MODEL],
|
||
model_device=EMBEDDING_DEVICE,
|
||
api_key=llm_model_dict[LLM_MODEL]["api_key"],
|
||
api_base_url=llm_model_dict[LLM_MODEL]["api_base_url"],
|
||
)
|
||
st.experimental_rerun()
|
||
|
||
# 将文件从向量库中删除,但不删除文件本身。
|
||
if cols[2].button(
|
||
"从向量库删除",
|
||
disabled=not (selected_rows and selected_rows[0]["in_db"]),
|
||
use_container_width=True,
|
||
):
|
||
for row in selected_rows:
|
||
api.delete_kb_doc(kb, row["file_name"],
|
||
embed_engine=EMBEDDING_ENGINE,embed_model=EMBEDDING_MODEL,
|
||
embed_model_path=embedding_model_dict[EMBEDDING_MODEL],
|
||
model_device=EMBEDDING_DEVICE,
|
||
api_key=llm_model_dict[LLM_MODEL]["api_key"],
|
||
api_base_url=llm_model_dict[LLM_MODEL]["api_base_url"],)
|
||
st.experimental_rerun()
|
||
|
||
if cols[3].button(
|
||
"从知识库中删除",
|
||
type="primary",
|
||
use_container_width=True,
|
||
):
|
||
for row in selected_rows:
|
||
ret = api.delete_kb_doc(kb, row["file_name"], True,
|
||
embed_engine=EMBEDDING_ENGINE,embed_model=EMBEDDING_MODEL,
|
||
embed_model_path=embedding_model_dict[EMBEDDING_MODEL],
|
||
model_device=EMBEDDING_DEVICE,
|
||
api_key=llm_model_dict[LLM_MODEL]["api_key"],
|
||
api_base_url=llm_model_dict[LLM_MODEL]["api_base_url"],)
|
||
st.toast(ret.get("msg", " "))
|
||
st.experimental_rerun()
|
||
|
||
st.divider()
|
||
|
||
cols = st.columns(3)
|
||
|
||
# todo: freezed
|
||
if cols[0].button(
|
||
"依据源文件重建向量库",
|
||
# help="无需上传文件,通过其它方式将文档拷贝到对应知识库content目录下,点击本按钮即可重建知识库。",
|
||
use_container_width=True,
|
||
type="primary",
|
||
):
|
||
with st.spinner("向量库重构中,请耐心等待,勿刷新或关闭页面。"):
|
||
empty = st.empty()
|
||
empty.progress(0.0, "")
|
||
for d in api.recreate_vector_store(
|
||
kb, vs_type=default_vs_type, embed_model=embedding_model, embedding_device=EMBEDDING_DEVICE,
|
||
embed_model_path=embedding_model_dict[EMBEDDING_MODEL], embed_engine=EMBEDDING_ENGINE,
|
||
api_key=llm_model_dict[LLM_MODEL]["api_key"],
|
||
api_base_url=llm_model_dict[LLM_MODEL]["api_base_url"],
|
||
):
|
||
if msg := check_error_msg(d):
|
||
st.toast(msg)
|
||
else:
|
||
empty.progress(d["finished"] / d["total"], f"正在处理: {d['doc']}")
|
||
st.experimental_rerun()
|
||
|
||
if cols[2].button(
|
||
"删除知识库",
|
||
use_container_width=True,
|
||
):
|
||
ret = api.delete_knowledge_base(kb,)
|
||
st.toast(ret.get("msg", " "))
|
||
time.sleep(1)
|
||
st.experimental_rerun()
|