173 lines
8.4 KiB
Python
173 lines
8.4 KiB
Python
from fastapi import Body, Request
|
||
from fastapi.responses import StreamingResponse
|
||
import asyncio, json, os
|
||
from typing import List, AsyncIterable
|
||
|
||
from langchain import LLMChain
|
||
from langchain.callbacks import AsyncIteratorCallbackHandler
|
||
from langchain.prompts.chat import ChatPromptTemplate
|
||
|
||
from coagent.llm_models import getChatModel, getChatModelFromConfig
|
||
from coagent.chat.utils import History, wrap_done
|
||
from coagent.llm_models.llm_config import LLMConfig, EmbedConfig
|
||
# from configs.model_config import (llm_model_dict, LLM_MODEL, VECTOR_SEARCH_TOP_K, SCORE_THRESHOLD)
|
||
from coagent.utils import BaseResponse
|
||
from loguru import logger
|
||
|
||
|
||
|
||
class Chat:
|
||
def __init__(
|
||
self,
|
||
engine_name: str = "",
|
||
top_k: int = 1,
|
||
stream: bool = False,
|
||
) -> None:
|
||
self.engine_name = engine_name
|
||
self.top_k = top_k
|
||
self.stream = stream
|
||
|
||
def check_service_status(self, ) -> BaseResponse:
|
||
return BaseResponse(code=200, msg=f"okok")
|
||
|
||
def chat(
|
||
self,
|
||
query: str = Body(..., description="用户输入", examples=["hello"]),
|
||
history: List[History] = Body(
|
||
[], description="历史对话",
|
||
examples=[[{"role": "user", "content": "我们来玩成语接龙,我先来,生龙活虎"}]]
|
||
),
|
||
engine_name: str = Body(..., description="知识库名称", examples=["samples"]),
|
||
top_k: int = Body(5, description="匹配向量数"),
|
||
score_threshold: float = Body(1, description="知识库匹配相关度阈值,取值范围在0-1之间,SCORE越小,相关度越高,取到1相当于不筛选,建议设置在0.5左右", ge=0, le=1),
|
||
stream: bool = Body(False, description="流式输出"),
|
||
local_doc_url: bool = Body(False, description="知识文件返回本地路径(true)或URL(false)"),
|
||
request: Request = None,
|
||
api_key: str = Body(os.environ.get("OPENAI_API_KEY")),
|
||
api_base_url: str = Body(os.environ.get("API_BASE_URL")),
|
||
embed_model: str = Body("", ),
|
||
embed_model_path: str = Body("", ),
|
||
embed_engine: str = Body("", ),
|
||
model_name: str = Body("", ),
|
||
temperature: float = Body(0.5, ),
|
||
model_device: str = Body("", ),
|
||
**kargs
|
||
):
|
||
params = locals()
|
||
params.pop("self", None)
|
||
llm_config: LLMConfig = LLMConfig(**params)
|
||
embed_config: EmbedConfig = EmbedConfig(**params)
|
||
self.engine_name = engine_name if isinstance(engine_name, str) else engine_name.default
|
||
self.top_k = top_k if isinstance(top_k, int) else top_k.default
|
||
self.score_threshold = score_threshold if isinstance(score_threshold, float) else score_threshold.default
|
||
self.stream = stream if isinstance(stream, bool) else stream.default
|
||
self.local_doc_url = local_doc_url if isinstance(local_doc_url, bool) else local_doc_url.default
|
||
self.request = request
|
||
return self._chat(query, history, llm_config, embed_config, **kargs)
|
||
|
||
def _chat(self, query: str, history: List[History], llm_config: LLMConfig, embed_config: EmbedConfig, **kargs):
|
||
history = [History(**h) if isinstance(h, dict) else h for h in history]
|
||
|
||
## check service dependcy is ok
|
||
service_status = self.check_service_status()
|
||
|
||
if service_status.code!=200: return service_status
|
||
|
||
def chat_iterator(query: str, history: List[History]):
|
||
# model = getChatModel()
|
||
model = getChatModelFromConfig(llm_config)
|
||
|
||
result, content = self.create_task(query, history, model, llm_config, embed_config, **kargs)
|
||
logger.info('result={}'.format(result))
|
||
logger.info('content={}'.format(content))
|
||
|
||
if self.stream:
|
||
for token in content["text"]:
|
||
result["answer"] = token
|
||
yield json.dumps(result, ensure_ascii=False)
|
||
else:
|
||
for token in content["text"]:
|
||
result["answer"] += token
|
||
yield json.dumps(result, ensure_ascii=False)
|
||
|
||
return StreamingResponse(chat_iterator(query, history),
|
||
media_type="text/event-stream")
|
||
|
||
def achat(
|
||
self,
|
||
query: str = Body(..., description="用户输入", examples=["hello"]),
|
||
history: List[History] = Body(
|
||
[], description="历史对话",
|
||
examples=[[{"role": "user", "content": "我们来玩成语接龙,我先来,生龙活虎"}]]
|
||
),
|
||
engine_name: str = Body(..., description="知识库名称", examples=["samples"]),
|
||
top_k: int = Body(5, description="匹配向量数"),
|
||
score_threshold: float = Body(1, description="知识库匹配相关度阈值,取值范围在0-1之间,SCORE越小,相关度越高,取到1相当于不筛选,建议设置在0.5左右", ge=0, le=1),
|
||
stream: bool = Body(False, description="流式输出"),
|
||
local_doc_url: bool = Body(False, description="知识文件返回本地路径(true)或URL(false)"),
|
||
request: Request = None,
|
||
api_key: str = Body(os.environ.get("OPENAI_API_KEY")),
|
||
api_base_url: str = Body(os.environ.get("API_BASE_URL")),
|
||
embed_model: str = Body("", ),
|
||
embed_model_path: str = Body("", ),
|
||
embed_engine: str = Body("", ),
|
||
model_name: str = Body("", ),
|
||
temperature: float = Body(0.5, ),
|
||
model_device: str = Body("", ),
|
||
):
|
||
#
|
||
params = locals()
|
||
params.pop("self", None)
|
||
llm_config: LLMConfig = LLMConfig(**params)
|
||
embed_config: EmbedConfig = EmbedConfig(**params)
|
||
self.engine_name = engine_name if isinstance(engine_name, str) else engine_name.default
|
||
self.top_k = top_k if isinstance(top_k, int) else top_k.default
|
||
self.score_threshold = score_threshold if isinstance(score_threshold, float) else score_threshold.default
|
||
self.stream = stream if isinstance(stream, bool) else stream.default
|
||
self.local_doc_url = local_doc_url if isinstance(local_doc_url, bool) else local_doc_url.default
|
||
self.request = request
|
||
return self._achat(query, history, llm_config, embed_config)
|
||
|
||
def _achat(self, query: str, history: List[History], llm_config: LLMConfig, embed_config: EmbedConfig):
|
||
history = [History(**h) if isinstance(h, dict) else h for h in history]
|
||
## check service dependcy is ok
|
||
service_status = self.check_service_status()
|
||
if service_status.code!=200: return service_status
|
||
|
||
async def chat_iterator(query, history):
|
||
callback = AsyncIteratorCallbackHandler()
|
||
# model = getChatModel()
|
||
model = getChatModelFromConfig(llm_config)
|
||
|
||
task, result = self.create_atask(query, history, model, llm_config, embed_config, callback)
|
||
if self.stream:
|
||
for token in callback["text"]:
|
||
result["answer"] = token
|
||
yield json.dumps(result, ensure_ascii=False)
|
||
else:
|
||
for token in callback["text"]:
|
||
result["answer"] += token
|
||
yield json.dumps(result, ensure_ascii=False)
|
||
await task
|
||
|
||
return StreamingResponse(chat_iterator(query, history),
|
||
media_type="text/event-stream")
|
||
|
||
def create_task(self, query: str, history: List[History], model, llm_config: LLMConfig, embed_config: EmbedConfig, **kargs):
|
||
'''构建 llm 生成任务'''
|
||
chat_prompt = ChatPromptTemplate.from_messages(
|
||
[i.to_msg_tuple() for i in history] + [("human", "{input}")]
|
||
)
|
||
chain = LLMChain(prompt=chat_prompt, llm=model)
|
||
content = chain({"input": query})
|
||
return {"answer": "", "docs": ""}, content
|
||
|
||
def create_atask(self, query, history, model, llm_config: LLMConfig, embed_config: EmbedConfig, callback: AsyncIteratorCallbackHandler):
|
||
chat_prompt = ChatPromptTemplate.from_messages(
|
||
[i.to_msg_tuple() for i in history] + [("human", "{input}")]
|
||
)
|
||
chain = LLMChain(prompt=chat_prompt, llm=model)
|
||
task = asyncio.create_task(wrap_done(
|
||
chain.acall({"input": query}), callback.done
|
||
))
|
||
return task, {"answer": "", "docs": ""} |