112 lines
3.8 KiB
Python
112 lines
3.8 KiB
Python
import os, sys
|
||
|
||
src_dir = os.path.join(
|
||
os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||
)
|
||
sys.path.append(src_dir)
|
||
sys.path.append(os.path.join(src_dir, "examples"))
|
||
|
||
from configs.model_config import EMBEDDING_MODEL, CB_ROOT_PATH
|
||
from configs.model_config import KB_ROOT_PATH, JUPYTER_WORK_PATH
|
||
from configs.server_config import SANDBOX_SERVER
|
||
from coagent.tools import toLangchainTools, TOOL_DICT, TOOL_SETS
|
||
from coagent.llm_models.llm_config import EmbedConfig, LLMConfig
|
||
from coagent.connector.phase import BasePhase
|
||
from coagent.connector.schema import Message, Memory
|
||
|
||
|
||
tools = toLangchainTools([TOOL_DICT[i] for i in TOOL_SETS if i in TOOL_DICT])
|
||
llm_config = LLMConfig(
|
||
model_name="gpt-3.5-turbo",api_key=os.environ["OPENAI_API_KEY"],
|
||
api_base_url=os.environ["API_BASE_URL"], temperature=0.3
|
||
)
|
||
embed_config = EmbedConfig(
|
||
embed_engine="model", embed_model="text2vec-base-chinese",
|
||
embed_model_path=os.path.join(src_dir, "embedding_models/text2vec-base-chinese")
|
||
)
|
||
|
||
|
||
|
||
|
||
# create your knowledge base
|
||
from io import BytesIO
|
||
from pathlib import Path
|
||
|
||
from coagent.service.kb_api import create_kb, upload_doc
|
||
from coagent.service.service_factory import get_kb_details
|
||
from coagent.utils.server_utils import run_async
|
||
kb_list = {x["kb_name"]: x for x in get_kb_details(KB_ROOT_PATH)}
|
||
|
||
# create a knowledge base
|
||
kb_name = "example_test"
|
||
data = {
|
||
"knowledge_base_name": kb_name,
|
||
"vector_store_type": "faiss", # default
|
||
"kb_root_path": KB_ROOT_PATH,
|
||
"embed_model": embed_config.embed_model,
|
||
"embed_engine": embed_config.embed_engine,
|
||
"embed_model_path": embed_config.embed_model_path,
|
||
"model_device": embed_config.model_device,
|
||
}
|
||
run_async(create_kb(**data))
|
||
|
||
# add doc to knowledge base
|
||
file = os.path.join("D://project/gitlab/llm/external/ant_code/Codefuse-chatbot/sources/docs/langchain_text_10.jsonl")
|
||
files = [file]
|
||
# if embedding init failed, you can use override = True
|
||
data = [{"override": True, "file": f,
|
||
"knowledge_base_name": kb_name, "not_refresh_vs_cache": False,
|
||
"kb_root_path": KB_ROOT_PATH, "embed_model": embed_config.embed_model,
|
||
"embed_engine": embed_config.embed_engine, "embed_model_path": embed_config.embed_model_path,
|
||
"model_device": embed_config.model_device,
|
||
}
|
||
for f in files]
|
||
|
||
for k in data:
|
||
file = Path(file).absolute().open("rb")
|
||
filename = file.name
|
||
|
||
from fastapi import UploadFile
|
||
from tempfile import SpooledTemporaryFile
|
||
|
||
temp_file = SpooledTemporaryFile(max_size=10 * 1024 * 1024)
|
||
temp_file.write(file.read())
|
||
temp_file.seek(0)
|
||
|
||
k.update({"file": UploadFile(file=temp_file, filename=filename),})
|
||
run_async(upload_doc(**k))
|
||
|
||
|
||
|
||
## start to chat with knowledge base
|
||
|
||
# log-level,print prompt和llm predict
|
||
os.environ["log_verbose"] = "2"
|
||
|
||
# set chat phase
|
||
phase_name = "docChatPhase"
|
||
phase = BasePhase(
|
||
phase_name, sandbox_server=SANDBOX_SERVER, jupyter_work_path=JUPYTER_WORK_PATH,
|
||
embed_config=embed_config, llm_config=llm_config, kb_root_path=KB_ROOT_PATH,
|
||
)
|
||
# round-1
|
||
query_content = "langchain有哪些模块"
|
||
query = Message(
|
||
role_name="human", role_type="user",
|
||
origin_query=query_content,
|
||
doc_engine_name=kb_name, score_threshold=1.0, top_k=3
|
||
)
|
||
|
||
output_message, output_memory = phase.step(query)
|
||
print(output_memory.to_str_messages(return_all=True, content_key="parsed_output_list"))
|
||
|
||
# round-2
|
||
query_content = "提示(prompts)有什么用?"
|
||
query = Message(
|
||
role_name="human", role_type="user",
|
||
origin_query=query_content,
|
||
doc_engine_name=kb_name, score_threshold=1.0, top_k=3
|
||
)
|
||
output_message, output_memory = phase.step(query)
|
||
|
||
print(output_memory.to_str_messages(return_all=True, content_key="parsed_output_list")) |