codefuse-chatbot/coagent/base_configs/env_config.py

92 lines
3.4 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import os
import platform
system_name = platform.system()
executable_path = os.getcwd()
# 日志存储路径
LOG_PATH = os.environ.get("LOG_PATH", None) or os.path.join(executable_path, "logs")
# 知识库默认存储路径
SOURCE_PATH = os.environ.get("SOURCE_PATH", None) or os.path.join(executable_path, "sources")
# 知识库默认存储路径
KB_ROOT_PATH = os.environ.get("KB_ROOT_PATH", None) or os.path.join(executable_path, "knowledge_base")
# 代码库默认存储路径
CB_ROOT_PATH = os.environ.get("CB_ROOT_PATH", None) or os.path.join(executable_path, "code_base")
# nltk 模型存储路径
NLTK_DATA_PATH = os.environ.get("NLTK_DATA_PATH", None) or os.path.join(executable_path, "nltk_data")
# 代码存储路径
JUPYTER_WORK_PATH = os.environ.get("JUPYTER_WORK_PATH", None) or os.path.join(executable_path, "jupyter_work")
# WEB_CRAWL存储路径
WEB_CRAWL_PATH = os.environ.get("WEB_CRAWL_PATH", None) or os.path.join(executable_path, "knowledge_base")
# NEBULA_DATA存储路径
NEBULA_PATH = os.environ.get("NEBULA_PATH", None) or os.path.join(executable_path, "data/nebula_data")
# CHROMA 存储路径
CHROMA_PERSISTENT_PATH = os.environ.get("CHROMA_PERSISTENT_PATH", None) or os.path.join(executable_path, "data/chroma_data")
for _path in [LOG_PATH, SOURCE_PATH, KB_ROOT_PATH, CB_ROOT_PATH, NLTK_DATA_PATH, JUPYTER_WORK_PATH, WEB_CRAWL_PATH, NEBULA_PATH, CHROMA_PERSISTENT_PATH]:
if not os.path.exists(_path):
os.makedirs(_path, exist_ok=True)
# 数据库默认存储路径。
# 如果使用sqlite可以直接修改DB_ROOT_PATH如果使用其它数据库请直接修改SQLALCHEMY_DATABASE_URI。
DB_ROOT_PATH = os.path.join(KB_ROOT_PATH, "info.db")
SQLALCHEMY_DATABASE_URI = f"sqlite:///{DB_ROOT_PATH}"
kbs_config = {
"faiss": {
},}
# GENERAL SERVER CONFIG
DEFAULT_BIND_HOST = os.environ.get("DEFAULT_BIND_HOST", None) or "127.0.0.1"
# NEBULA SERVER CONFIG
NEBULA_HOST = DEFAULT_BIND_HOST
NEBULA_PORT = 9669
NEBULA_STORAGED_PORT = 9779
NEBULA_USER = 'root'
NEBULA_PASSWORD = ''
NEBULA_GRAPH_SERVER = {
"host": DEFAULT_BIND_HOST,
"port": NEBULA_PORT,
"docker_port": NEBULA_PORT
}
# CHROMA CONFIG
# CHROMA_PERSISTENT_PATH = '/home/user/chatbot/data/chroma_data'
# CHROMA_PERSISTENT_PATH = '/Users/bingxu/Desktop/工作/大模型/chatbot/codefuse-chatbot-antcode/data/chroma_data'
# 默认向量库类型。可选faiss, milvus, pg.
DEFAULT_VS_TYPE = os.environ.get("DEFAULT_VS_TYPE") or "faiss"
# 缓存向量库数量
CACHED_VS_NUM = os.environ.get("CACHED_VS_NUM") or 1
# 知识库中单段文本长度
CHUNK_SIZE = os.environ.get("CHUNK_SIZE") or 500
# 知识库中相邻文本重合长度
OVERLAP_SIZE = os.environ.get("OVERLAP_SIZE") or 50
# 知识库匹配向量数量
VECTOR_SEARCH_TOP_K = os.environ.get("VECTOR_SEARCH_TOP_K") or 5
# 知识库匹配相关度阈值取值范围在0-1之间SCORE越小相关度越高取到1相当于不筛选建议设置在0.5左右
# Mac 可能存在无法使用normalized_L2的问题因此调整SCORE_THRESHOLD至 0~1100
FAISS_NORMALIZE_L2 = True if system_name in ["Linux", "Windows"] else False
SCORE_THRESHOLD = 1 if system_name in ["Linux", "Windows"] else 1100
# 搜索引擎匹配结题数量
SEARCH_ENGINE_TOP_K = os.environ.get("SEARCH_ENGINE_TOP_K") or 5
# 代码引擎匹配结题数量
CODE_SEARCH_TOP_K = os.environ.get("CODE_SEARCH_TOP_K") or 1