codefuse-chatbot/coagent/connector/agents/react_agent.py

148 lines
7.1 KiB
Python

from typing import List, Union
import traceback
import copy
from loguru import logger
from langchain.schema import BaseRetriever
from coagent.connector.schema import (
Memory, Task, Env, Role, Message, ActionStatus, PromptField, LogVerboseEnum
)
from coagent.connector.memory_manager import BaseMemoryManager
from coagent.llm_models import LLMConfig, EmbedConfig
from .base_agent import BaseAgent
from coagent.connector.memory_manager import LocalMemoryManager
from coagent.base_configs.env_config import JUPYTER_WORK_PATH, KB_ROOT_PATH
class ReactAgent(BaseAgent):
def __init__(
self,
role: Role,
prompt_config: List[PromptField],
prompt_manager_type: str = "PromptManager",
task: Task = None,
memory: Memory = None,
chat_turn: int = 1,
focus_agents: List[str] = [],
focus_message_keys: List[str] = [],
#
llm_config: LLMConfig = None,
embed_config: EmbedConfig = None,
sandbox_server: dict = {},
jupyter_work_path: str = JUPYTER_WORK_PATH,
kb_root_path: str = KB_ROOT_PATH,
doc_retrieval: Union[BaseRetriever] = None,
code_retrieval = None,
search_retrieval = None,
log_verbose: str = "0"
):
super().__init__(role, prompt_config, prompt_manager_type, task, memory, chat_turn,
focus_agents, focus_message_keys, llm_config, embed_config, sandbox_server,
jupyter_work_path, kb_root_path, doc_retrieval, code_retrieval, search_retrieval, log_verbose
)
def step(self, query: Message, history: Memory = None, background: Memory = None, memory_manager: BaseMemoryManager = None) -> Message:
'''agent reponse from multi-message'''
for message in self.astep(query, history, background, memory_manager):
pass
return message
def astep(self, query: Message, history: Memory = None, background: Memory = None, memory_manager: BaseMemoryManager = None) -> Message:
'''agent reponse from multi-message'''
step_nums = copy.deepcopy(self.chat_turn)
react_memory = Memory(messages=[])
# insert query
output_message = Message(
user_name=query.user_name,
role_name=self.role.role_name,
role_type="assistant", #self.role.role_type,
role_content=query.input_query,
step_content="",
input_query=query.input_query,
tools=query.tools,
# parsed_output_list=[query.parsed_output],
customed_kargs=query.customed_kargs
)
query_c = copy.deepcopy(query)
query_c = self.start_action_step(query_c)
# if query.parsed_output:
# query_c.parsed_output = {"Question": "\n".join([f"{v}" for k, v in query.parsed_output.items() if k not in ["Action Status"]])}
# else:
# query_c.parsed_output = {"Question": query.input_query}
# react_memory.append(query_c)
# self_memory = self.memory if self.do_use_self_memory else None
idx = 0
# start to react
while step_nums > 0:
output_message.role_content = output_message.step_content
# prompt = self.create_prompt(query, self.memory, history, background, react_memory, memory_manager.current_memory)
if memory_manager is None:
memory_manager = LocalMemoryManager(
unique_name=self.role.role_name,
do_init=True,
kb_root_path = self.kb_root_path,
embed_config=self.embed_config,
llm_config=self.embed_config
)
memory_manager.append(query)
memory_pool = memory_manager.get_memory_pool(query_c.user_name)
prompt = self.prompt_manager.generate_full_prompt(
previous_agent_message=query_c, agent_long_term_memory=self.memory, ui_history=history, chain_summary_messages=background, react_memory=react_memory,
memory_pool=memory_pool)
try:
content = self.llm.predict(prompt)
except Exception as e:
logger.error(f"error prompt: {prompt}")
raise Exception(traceback.format_exc())
output_message.role_content = "\n"+content
output_message.step_content += "\n"+output_message.role_content
yield output_message
if LogVerboseEnum.ge(LogVerboseEnum.Log2Level, self.log_verbose):
logger.debug(f"{self.role.role_name}, {idx} iteration prompt: {prompt}")
if LogVerboseEnum.ge(LogVerboseEnum.Log1Level, self.log_verbose):
logger.info(f"{self.role.role_name}, {idx} iteration step_run: {output_message.role_content}")
output_message = self.message_utils.parser(output_message)
# when get finished signal can stop early
if output_message.action_status == ActionStatus.FINISHED or output_message.action_status == ActionStatus.STOPPED:
output_message.parsed_output_list.append(output_message.parsed_output)
break
# according the output to choose one action for code_content or tool_content
output_message, observation_message = self.message_utils.step_router(output_message)
output_message.parsed_output_list.append(output_message.parsed_output)
react_message = copy.deepcopy(output_message)
react_memory.append(react_message)
if observation_message:
react_memory.append(observation_message)
output_message.parsed_output_list.append(observation_message.parsed_output)
# logger.debug(f"{observation_message.role_name} content: {observation_message.role_content}")
idx += 1
step_nums -= 1
yield output_message
# react' self_memory saved at last
self.append_history(output_message)
output_message.input_query = query.input_query
# end_action_step, BUG:it may cause slack some information
output_message = self.end_action_step(output_message)
# update memory pool
memory_manager.append(output_message)
yield output_message
def pre_print(self, query: Message, history: Memory = None, background: Memory = None, memory_manager: BaseMemoryManager=None):
react_memory = Memory(messages=[])
prompt = self.prompt_manager.pre_print(
previous_agent_message=query, agent_long_term_memory=self.memory, ui_history=history, chain_summary_messages=background, react_memory=react_memory,
memory_pool=memory_manager.current_memory)
title = f"<<<<{self.role.role_name}'s prompt>>>>"
print("#"*len(title) + f"\n{title}\n"+ "#"*len(title)+ f"\n\n{prompt}\n\n")