777 lines
29 KiB
Python
777 lines
29 KiB
Python
"""Wrapper around FAISS vector database."""
|
|
from __future__ import annotations
|
|
|
|
import operator
|
|
import os
|
|
import pickle
|
|
import uuid
|
|
import warnings
|
|
from pathlib import Path
|
|
from typing import (
|
|
Any,
|
|
Callable,
|
|
Dict,
|
|
Iterable,
|
|
List,
|
|
Optional,
|
|
Sized,
|
|
Tuple,
|
|
)
|
|
|
|
import numpy as np
|
|
|
|
from langchain.docstore.base import AddableMixin, Docstore
|
|
from langchain.docstore.document import Document
|
|
from langchain.docstore.in_memory import InMemoryDocstore
|
|
from langchain.embeddings.base import Embeddings
|
|
from langchain.vectorstores.base import VectorStore
|
|
from langchain.vectorstores.utils import DistanceStrategy, maximal_marginal_relevance
|
|
|
|
|
|
def dependable_faiss_import(no_avx2: Optional[bool] = None) -> Any:
|
|
"""
|
|
Import faiss if available, otherwise raise error.
|
|
If FAISS_NO_AVX2 environment variable is set, it will be considered
|
|
to load FAISS with no AVX2 optimization.
|
|
|
|
Args:
|
|
no_avx2: Load FAISS strictly with no AVX2 optimization
|
|
so that the vectorstore is portable and compatible with other devices.
|
|
"""
|
|
if no_avx2 is None and "FAISS_NO_AVX2" in os.environ:
|
|
no_avx2 = bool(os.getenv("FAISS_NO_AVX2"))
|
|
|
|
try:
|
|
if no_avx2:
|
|
from faiss import swigfaiss as faiss
|
|
else:
|
|
import faiss
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import faiss python package. "
|
|
"Please install it with `pip install faiss-gpu` (for CUDA supported GPU) "
|
|
"or `pip install faiss-cpu` (depending on Python version)."
|
|
)
|
|
return faiss
|
|
|
|
|
|
def _len_check_if_sized(x: Any, y: Any, x_name: str, y_name: str) -> None:
|
|
if isinstance(x, Sized) and isinstance(y, Sized) and len(x) != len(y):
|
|
raise ValueError(
|
|
f"{x_name} and {y_name} expected to be equal length but "
|
|
f"len({x_name})={len(x)} and len({y_name})={len(y)}"
|
|
)
|
|
return
|
|
|
|
|
|
class FAISS(VectorStore):
|
|
"""Wrapper around FAISS vector database.
|
|
|
|
To use, you must have the ``faiss`` python package installed.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain.embeddings.openai import OpenAIEmbeddings
|
|
from langchain.vectorstores import FAISS
|
|
|
|
embeddings = OpenAIEmbeddings()
|
|
texts = ["FAISS is an important library", "LangChain supports FAISS"]
|
|
faiss = FAISS.from_texts(texts, embeddings)
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
embedding_function: Callable,
|
|
index: Any,
|
|
docstore: Docstore,
|
|
index_to_docstore_id: Dict[int, str],
|
|
relevance_score_fn: Optional[Callable[[float], float]] = None,
|
|
normalize_L2: bool = False,
|
|
distance_strategy: DistanceStrategy = DistanceStrategy.EUCLIDEAN_DISTANCE,
|
|
):
|
|
"""Initialize with necessary components."""
|
|
self.embedding_function = embedding_function
|
|
self.index = index
|
|
self.docstore = docstore
|
|
self.index_to_docstore_id = index_to_docstore_id
|
|
self.distance_strategy = distance_strategy
|
|
self.override_relevance_score_fn = relevance_score_fn
|
|
self._normalize_L2 = normalize_L2
|
|
if (
|
|
self.distance_strategy != DistanceStrategy.EUCLIDEAN_DISTANCE
|
|
and self._normalize_L2
|
|
):
|
|
warnings.warn(
|
|
"Normalizing L2 is not applicable for metric type: {strategy}".format(
|
|
strategy=self.distance_strategy
|
|
)
|
|
)
|
|
|
|
def __add(
|
|
self,
|
|
texts: Iterable[str],
|
|
embeddings: Iterable[List[float]],
|
|
metadatas: Optional[Iterable[dict]] = None,
|
|
ids: Optional[List[str]] = None,
|
|
) -> List[str]:
|
|
faiss = dependable_faiss_import()
|
|
|
|
if not isinstance(self.docstore, AddableMixin):
|
|
raise ValueError(
|
|
"If trying to add texts, the underlying docstore should support "
|
|
f"adding items, which {self.docstore} does not"
|
|
)
|
|
|
|
_len_check_if_sized(texts, metadatas, "texts", "metadatas")
|
|
_metadatas = metadatas or ({} for _ in texts)
|
|
documents = [
|
|
Document(page_content=t, metadata=m) for t, m in zip(texts, _metadatas)
|
|
]
|
|
|
|
_len_check_if_sized(documents, embeddings, "documents", "embeddings")
|
|
_len_check_if_sized(documents, ids, "documents", "ids")
|
|
|
|
# Add to the index.
|
|
vector = np.array(embeddings, dtype=np.float32)
|
|
if self._normalize_L2:
|
|
faiss.normalize_L2(vector)
|
|
self.index.add(vector)
|
|
|
|
# Add information to docstore and index.
|
|
ids = ids or [str(uuid.uuid4()) for _ in texts]
|
|
self.docstore.add({id_: doc for id_, doc in zip(ids, documents)})
|
|
starting_len = len(self.index_to_docstore_id)
|
|
index_to_id = {starting_len + j: id_ for j, id_ in enumerate(ids)}
|
|
self.index_to_docstore_id.update(index_to_id)
|
|
return ids
|
|
|
|
def add_texts(
|
|
self,
|
|
texts: Iterable[str],
|
|
metadatas: Optional[List[dict]] = None,
|
|
ids: Optional[List[str]] = None,
|
|
**kwargs: Any,
|
|
) -> List[str]:
|
|
"""Run more texts through the embeddings and add to the vectorstore.
|
|
|
|
Args:
|
|
texts: Iterable of strings to add to the vectorstore.
|
|
metadatas: Optional list of metadatas associated with the texts.
|
|
ids: Optional list of unique IDs.
|
|
|
|
Returns:
|
|
List of ids from adding the texts into the vectorstore.
|
|
"""
|
|
# embeddings = [self.embedding_function(text) for text in texts]
|
|
embeddings = self.embedding_function(texts)
|
|
return self.__add(texts, embeddings, metadatas=metadatas, ids=ids)
|
|
|
|
def add_embeddings(
|
|
self,
|
|
text_embeddings: Iterable[Tuple[str, List[float]]],
|
|
metadatas: Optional[List[dict]] = None,
|
|
ids: Optional[List[str]] = None,
|
|
**kwargs: Any,
|
|
) -> List[str]:
|
|
"""Run more texts through the embeddings and add to the vectorstore.
|
|
|
|
Args:
|
|
text_embeddings: Iterable pairs of string and embedding to
|
|
add to the vectorstore.
|
|
metadatas: Optional list of metadatas associated with the texts.
|
|
ids: Optional list of unique IDs.
|
|
|
|
Returns:
|
|
List of ids from adding the texts into the vectorstore.
|
|
"""
|
|
# Embed and create the documents.
|
|
texts, embeddings = zip(*text_embeddings)
|
|
return self.__add(texts, embeddings, metadatas=metadatas, ids=ids)
|
|
|
|
def similarity_search_with_score_by_vector(
|
|
self,
|
|
embedding: List[float],
|
|
k: int = 4,
|
|
filter: Optional[Dict[str, Any]] = None,
|
|
fetch_k: int = 20,
|
|
**kwargs: Any,
|
|
) -> List[Tuple[Document, float]]:
|
|
"""Return docs most similar to query.
|
|
|
|
Args:
|
|
embedding: Embedding vector to look up documents similar to.
|
|
k: Number of Documents to return. Defaults to 4.
|
|
filter (Optional[Dict[str, Any]]): Filter by metadata. Defaults to None.
|
|
fetch_k: (Optional[int]) Number of Documents to fetch before filtering.
|
|
Defaults to 20.
|
|
**kwargs: kwargs to be passed to similarity search. Can include:
|
|
score_threshold: Optional, a floating point value between 0 to 1 to
|
|
filter the resulting set of retrieved docs
|
|
|
|
Returns:
|
|
List of documents most similar to the query text and L2 distance
|
|
in float for each. Lower score represents more similarity.
|
|
"""
|
|
faiss = dependable_faiss_import()
|
|
vector = np.array([embedding], dtype=np.float32)
|
|
if self._normalize_L2:
|
|
faiss.normalize_L2(vector)
|
|
scores, indices = self.index.search(vector, k if filter is None else fetch_k)
|
|
docs = []
|
|
for j, i in enumerate(indices[0]):
|
|
if i == -1:
|
|
# This happens when not enough docs are returned.
|
|
continue
|
|
_id = self.index_to_docstore_id[i]
|
|
doc = self.docstore.search(_id)
|
|
if not isinstance(doc, Document):
|
|
raise ValueError(f"Could not find document for id {_id}, got {doc}")
|
|
if filter is not None:
|
|
filter = {
|
|
key: [value] if not isinstance(value, list) else value
|
|
for key, value in filter.items()
|
|
}
|
|
if all(doc.metadata.get(key) in value for key, value in filter.items()):
|
|
docs.append((doc, scores[0][j]))
|
|
else:
|
|
docs.append((doc, scores[0][j]))
|
|
|
|
score_threshold = kwargs.get("score_threshold")
|
|
if score_threshold is not None:
|
|
cmp = (
|
|
operator.ge
|
|
if self.distance_strategy
|
|
in (DistanceStrategy.MAX_INNER_PRODUCT, DistanceStrategy.JACCARD)
|
|
else operator.le
|
|
)
|
|
docs = [
|
|
(doc, similarity)
|
|
for doc, similarity in docs
|
|
if cmp(similarity, score_threshold)
|
|
]
|
|
return docs[:k]
|
|
|
|
def similarity_search_with_score(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
filter: Optional[Dict[str, Any]] = None,
|
|
fetch_k: int = 20,
|
|
**kwargs: Any,
|
|
) -> List[Tuple[Document, float]]:
|
|
"""Return docs most similar to query.
|
|
|
|
Args:
|
|
query: Text to look up documents similar to.
|
|
k: Number of Documents to return. Defaults to 4.
|
|
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
|
fetch_k: (Optional[int]) Number of Documents to fetch before filtering.
|
|
Defaults to 20.
|
|
|
|
Returns:
|
|
List of documents most similar to the query text with
|
|
L2 distance in float. Lower score represents more similarity.
|
|
"""
|
|
embedding = self.embedding_function(query)
|
|
docs = self.similarity_search_with_score_by_vector(
|
|
embedding,
|
|
k,
|
|
filter=filter,
|
|
fetch_k=fetch_k,
|
|
**kwargs,
|
|
)
|
|
return docs
|
|
|
|
def similarity_search_by_vector(
|
|
self,
|
|
embedding: List[float],
|
|
k: int = 4,
|
|
filter: Optional[Dict[str, Any]] = None,
|
|
fetch_k: int = 20,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
"""Return docs most similar to embedding vector.
|
|
|
|
Args:
|
|
embedding: Embedding to look up documents similar to.
|
|
k: Number of Documents to return. Defaults to 4.
|
|
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
|
fetch_k: (Optional[int]) Number of Documents to fetch before filtering.
|
|
Defaults to 20.
|
|
|
|
Returns:
|
|
List of Documents most similar to the embedding.
|
|
"""
|
|
docs_and_scores = self.similarity_search_with_score_by_vector(
|
|
embedding,
|
|
k,
|
|
filter=filter,
|
|
fetch_k=fetch_k,
|
|
**kwargs,
|
|
)
|
|
return [doc for doc, _ in docs_and_scores]
|
|
|
|
def similarity_search(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
filter: Optional[Dict[str, Any]] = None,
|
|
fetch_k: int = 20,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
"""Return docs most similar to query.
|
|
|
|
Args:
|
|
query: Text to look up documents similar to.
|
|
k: Number of Documents to return. Defaults to 4.
|
|
filter: (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
|
fetch_k: (Optional[int]) Number of Documents to fetch before filtering.
|
|
Defaults to 20.
|
|
|
|
Returns:
|
|
List of Documents most similar to the query.
|
|
"""
|
|
docs_and_scores = self.similarity_search_with_score(
|
|
query, k, filter=filter, fetch_k=fetch_k, **kwargs
|
|
)
|
|
return [doc for doc, _ in docs_and_scores]
|
|
|
|
def max_marginal_relevance_search_with_score_by_vector(
|
|
self,
|
|
embedding: List[float],
|
|
*,
|
|
k: int = 4,
|
|
fetch_k: int = 20,
|
|
lambda_mult: float = 0.5,
|
|
filter: Optional[Dict[str, Any]] = None,
|
|
) -> List[Tuple[Document, float]]:
|
|
"""Return docs and their similarity scores selected using the maximal marginal
|
|
relevance.
|
|
|
|
Maximal marginal relevance optimizes for similarity to query AND diversity
|
|
among selected documents.
|
|
|
|
Args:
|
|
embedding: Embedding to look up documents similar to.
|
|
k: Number of Documents to return. Defaults to 4.
|
|
fetch_k: Number of Documents to fetch before filtering to
|
|
pass to MMR algorithm.
|
|
lambda_mult: Number between 0 and 1 that determines the degree
|
|
of diversity among the results with 0 corresponding
|
|
to maximum diversity and 1 to minimum diversity.
|
|
Defaults to 0.5.
|
|
Returns:
|
|
List of Documents and similarity scores selected by maximal marginal
|
|
relevance and score for each.
|
|
"""
|
|
scores, indices = self.index.search(
|
|
np.array([embedding], dtype=np.float32),
|
|
fetch_k if filter is None else fetch_k * 2,
|
|
)
|
|
if filter is not None:
|
|
filtered_indices = []
|
|
for i in indices[0]:
|
|
if i == -1:
|
|
# This happens when not enough docs are returned.
|
|
continue
|
|
_id = self.index_to_docstore_id[i]
|
|
doc = self.docstore.search(_id)
|
|
if not isinstance(doc, Document):
|
|
raise ValueError(f"Could not find document for id {_id}, got {doc}")
|
|
if all(
|
|
doc.metadata.get(key) in value
|
|
if isinstance(value, list)
|
|
else doc.metadata.get(key) == value
|
|
for key, value in filter.items()
|
|
):
|
|
filtered_indices.append(i)
|
|
indices = np.array([filtered_indices])
|
|
# -1 happens when not enough docs are returned.
|
|
embeddings = [self.index.reconstruct(int(i)) for i in indices[0] if i != -1]
|
|
mmr_selected = maximal_marginal_relevance(
|
|
np.array([embedding], dtype=np.float32),
|
|
embeddings,
|
|
k=k,
|
|
lambda_mult=lambda_mult,
|
|
)
|
|
selected_indices = [indices[0][i] for i in mmr_selected]
|
|
selected_scores = [scores[0][i] for i in mmr_selected]
|
|
docs_and_scores = []
|
|
for i, score in zip(selected_indices, selected_scores):
|
|
if i == -1:
|
|
# This happens when not enough docs are returned.
|
|
continue
|
|
_id = self.index_to_docstore_id[i]
|
|
doc = self.docstore.search(_id)
|
|
if not isinstance(doc, Document):
|
|
raise ValueError(f"Could not find document for id {_id}, got {doc}")
|
|
docs_and_scores.append((doc, score))
|
|
return docs_and_scores
|
|
|
|
def max_marginal_relevance_search_by_vector(
|
|
self,
|
|
embedding: List[float],
|
|
k: int = 4,
|
|
fetch_k: int = 20,
|
|
lambda_mult: float = 0.5,
|
|
filter: Optional[Dict[str, Any]] = None,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
"""Return docs selected using the maximal marginal relevance.
|
|
|
|
Maximal marginal relevance optimizes for similarity to query AND diversity
|
|
among selected documents.
|
|
|
|
Args:
|
|
embedding: Embedding to look up documents similar to.
|
|
k: Number of Documents to return. Defaults to 4.
|
|
fetch_k: Number of Documents to fetch before filtering to
|
|
pass to MMR algorithm.
|
|
lambda_mult: Number between 0 and 1 that determines the degree
|
|
of diversity among the results with 0 corresponding
|
|
to maximum diversity and 1 to minimum diversity.
|
|
Defaults to 0.5.
|
|
Returns:
|
|
List of Documents selected by maximal marginal relevance.
|
|
"""
|
|
docs_and_scores = self.max_marginal_relevance_search_with_score_by_vector(
|
|
embedding, k=k, fetch_k=fetch_k, lambda_mult=lambda_mult, filter=filter
|
|
)
|
|
return [doc for doc, _ in docs_and_scores]
|
|
|
|
def max_marginal_relevance_search(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
fetch_k: int = 20,
|
|
lambda_mult: float = 0.5,
|
|
filter: Optional[Dict[str, Any]] = None,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
"""Return docs selected using the maximal marginal relevance.
|
|
|
|
Maximal marginal relevance optimizes for similarity to query AND diversity
|
|
among selected documents.
|
|
|
|
Args:
|
|
query: Text to look up documents similar to.
|
|
k: Number of Documents to return. Defaults to 4.
|
|
fetch_k: Number of Documents to fetch before filtering (if needed) to
|
|
pass to MMR algorithm.
|
|
lambda_mult: Number between 0 and 1 that determines the degree
|
|
of diversity among the results with 0 corresponding
|
|
to maximum diversity and 1 to minimum diversity.
|
|
Defaults to 0.5.
|
|
Returns:
|
|
List of Documents selected by maximal marginal relevance.
|
|
"""
|
|
embedding = self.embedding_function(query)
|
|
docs = self.max_marginal_relevance_search_by_vector(
|
|
embedding,
|
|
k=k,
|
|
fetch_k=fetch_k,
|
|
lambda_mult=lambda_mult,
|
|
filter=filter,
|
|
**kwargs,
|
|
)
|
|
return docs
|
|
|
|
def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> Optional[bool]:
|
|
"""Delete by ID. These are the IDs in the vectorstore.
|
|
|
|
Args:
|
|
ids: List of ids to delete.
|
|
|
|
Returns:
|
|
Optional[bool]: True if deletion is successful,
|
|
False otherwise, None if not implemented.
|
|
"""
|
|
if ids is None:
|
|
raise ValueError("No ids provided to delete.")
|
|
missing_ids = set(ids).difference(self.index_to_docstore_id.values())
|
|
if missing_ids:
|
|
raise ValueError(
|
|
f"Some specified ids do not exist in the current store. Ids not found: "
|
|
f"{missing_ids}"
|
|
)
|
|
|
|
reversed_index = {id_: idx for idx, id_ in self.index_to_docstore_id.items()}
|
|
index_to_delete = [reversed_index[id_] for id_ in ids]
|
|
|
|
self.index.remove_ids(np.array(index_to_delete, dtype=np.int64))
|
|
self.docstore.delete(ids)
|
|
|
|
remaining_ids = [
|
|
id_
|
|
for i, id_ in sorted(self.index_to_docstore_id.items())
|
|
if i not in index_to_delete
|
|
]
|
|
self.index_to_docstore_id = {i: id_ for i, id_ in enumerate(remaining_ids)}
|
|
|
|
return True
|
|
|
|
def merge_from(self, target: FAISS) -> None:
|
|
"""Merge another FAISS object with the current one.
|
|
|
|
Add the target FAISS to the current one.
|
|
|
|
Args:
|
|
target: FAISS object you wish to merge into the current one
|
|
|
|
Returns:
|
|
None.
|
|
"""
|
|
if not isinstance(self.docstore, AddableMixin):
|
|
raise ValueError("Cannot merge with this type of docstore")
|
|
# Numerical index for target docs are incremental on existing ones
|
|
starting_len = len(self.index_to_docstore_id)
|
|
|
|
# Merge two IndexFlatL2
|
|
self.index.merge_from(target.index)
|
|
|
|
# Get id and docs from target FAISS object
|
|
full_info = []
|
|
for i, target_id in target.index_to_docstore_id.items():
|
|
doc = target.docstore.search(target_id)
|
|
if not isinstance(doc, Document):
|
|
raise ValueError("Document should be returned")
|
|
full_info.append((starting_len + i, target_id, doc))
|
|
|
|
# Add information to docstore and index_to_docstore_id.
|
|
self.docstore.add({_id: doc for _, _id, doc in full_info})
|
|
index_to_id = {index: _id for index, _id, _ in full_info}
|
|
self.index_to_docstore_id.update(index_to_id)
|
|
|
|
@classmethod
|
|
def __from(
|
|
cls,
|
|
texts: Iterable[str],
|
|
embeddings: List[List[float]],
|
|
embedding: Embeddings,
|
|
metadatas: Optional[Iterable[dict]] = None,
|
|
ids: Optional[List[str]] = None,
|
|
normalize_L2: bool = False,
|
|
distance_strategy: DistanceStrategy = DistanceStrategy.EUCLIDEAN_DISTANCE,
|
|
**kwargs: Any,
|
|
) -> FAISS:
|
|
faiss = dependable_faiss_import()
|
|
if distance_strategy == DistanceStrategy.MAX_INNER_PRODUCT:
|
|
index = faiss.IndexFlatIP(len(embeddings[0]))
|
|
else:
|
|
# Default to L2, currently other metric types not initialized.
|
|
index = faiss.IndexFlatL2(len(embeddings[0]))
|
|
vecstore = cls(
|
|
embedding.embed_query,
|
|
index,
|
|
InMemoryDocstore(),
|
|
{},
|
|
normalize_L2=normalize_L2,
|
|
distance_strategy=distance_strategy,
|
|
**kwargs,
|
|
)
|
|
vecstore.__add(texts, embeddings, metadatas=metadatas, ids=ids)
|
|
return vecstore
|
|
|
|
@classmethod
|
|
def from_texts(
|
|
cls,
|
|
texts: List[str],
|
|
embedding: Embeddings,
|
|
metadatas: Optional[List[dict]] = None,
|
|
ids: Optional[List[str]] = None,
|
|
**kwargs: Any,
|
|
) -> FAISS:
|
|
"""Construct FAISS wrapper from raw documents.
|
|
|
|
This is a user friendly interface that:
|
|
1. Embeds documents.
|
|
2. Creates an in memory docstore
|
|
3. Initializes the FAISS database
|
|
|
|
This is intended to be a quick way to get started.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain import FAISS
|
|
from langchain.embeddings import OpenAIEmbeddings
|
|
|
|
embeddings = OpenAIEmbeddings()
|
|
faiss = FAISS.from_texts(texts, embeddings)
|
|
"""
|
|
from loguru import logger
|
|
logger.debug(f"texts: {len(texts)}")
|
|
embeddings = embedding.embed_documents(texts)
|
|
return cls.__from(
|
|
texts,
|
|
embeddings,
|
|
embedding,
|
|
metadatas=metadatas,
|
|
ids=ids,
|
|
**kwargs,
|
|
)
|
|
|
|
@classmethod
|
|
def from_embeddings(
|
|
cls,
|
|
text_embeddings: Iterable[Tuple[str, List[float]]],
|
|
embedding: Embeddings,
|
|
metadatas: Optional[Iterable[dict]] = None,
|
|
ids: Optional[List[str]] = None,
|
|
**kwargs: Any,
|
|
) -> FAISS:
|
|
"""Construct FAISS wrapper from raw documents.
|
|
|
|
This is a user friendly interface that:
|
|
1. Embeds documents.
|
|
2. Creates an in memory docstore
|
|
3. Initializes the FAISS database
|
|
|
|
This is intended to be a quick way to get started.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain import FAISS
|
|
from langchain.embeddings import OpenAIEmbeddings
|
|
|
|
embeddings = OpenAIEmbeddings()
|
|
text_embeddings = embeddings.embed_documents(texts)
|
|
text_embedding_pairs = zip(texts, text_embeddings)
|
|
faiss = FAISS.from_embeddings(text_embedding_pairs, embeddings)
|
|
"""
|
|
texts = [t[0] for t in text_embeddings]
|
|
embeddings = [t[1] for t in text_embeddings]
|
|
return cls.__from(
|
|
texts,
|
|
embeddings,
|
|
embedding,
|
|
metadatas=metadatas,
|
|
ids=ids,
|
|
**kwargs,
|
|
)
|
|
|
|
def save_local(self, folder_path: str, index_name: str = "index") -> None:
|
|
"""Save FAISS index, docstore, and index_to_docstore_id to disk.
|
|
|
|
Args:
|
|
folder_path: folder path to save index, docstore,
|
|
and index_to_docstore_id to.
|
|
index_name: for saving with a specific index file name
|
|
"""
|
|
path = Path(folder_path)
|
|
path.mkdir(exist_ok=True, parents=True)
|
|
|
|
# save index separately since it is not picklable
|
|
faiss = dependable_faiss_import()
|
|
faiss.write_index(
|
|
self.index, str(path / "{index_name}.faiss".format(index_name=index_name))
|
|
)
|
|
|
|
# save docstore and index_to_docstore_id
|
|
with open(path / "{index_name}.pkl".format(index_name=index_name), "wb") as f:
|
|
pickle.dump((self.docstore, self.index_to_docstore_id), f)
|
|
|
|
@classmethod
|
|
def load_local(
|
|
cls,
|
|
folder_path: str,
|
|
embeddings: Embeddings,
|
|
index_name: str = "index",
|
|
**kwargs: Any,
|
|
) -> FAISS:
|
|
"""Load FAISS index, docstore, and index_to_docstore_id from disk.
|
|
|
|
Args:
|
|
folder_path: folder path to load index, docstore,
|
|
and index_to_docstore_id from.
|
|
embeddings: Embeddings to use when generating queries
|
|
index_name: for saving with a specific index file name
|
|
"""
|
|
path = Path(folder_path)
|
|
# load index separately since it is not picklable
|
|
faiss = dependable_faiss_import()
|
|
index = faiss.read_index(
|
|
str(path / "{index_name}.faiss".format(index_name=index_name))
|
|
)
|
|
|
|
# load docstore and index_to_docstore_id
|
|
with open(path / "{index_name}.pkl".format(index_name=index_name), "rb") as f:
|
|
docstore, index_to_docstore_id = pickle.load(f)
|
|
return cls(
|
|
embeddings.embed_query, index, docstore, index_to_docstore_id, **kwargs
|
|
)
|
|
|
|
def serialize_to_bytes(self) -> bytes:
|
|
"""Serialize FAISS index, docstore, and index_to_docstore_id to bytes."""
|
|
return pickle.dumps((self.index, self.docstore, self.index_to_docstore_id))
|
|
|
|
@classmethod
|
|
def deserialize_from_bytes(
|
|
cls,
|
|
serialized: bytes,
|
|
embeddings: Embeddings,
|
|
**kwargs: Any,
|
|
) -> FAISS:
|
|
"""Deserialize FAISS index, docstore, and index_to_docstore_id from bytes."""
|
|
index, docstore, index_to_docstore_id = pickle.loads(serialized)
|
|
return cls(
|
|
embeddings.embed_query, index, docstore, index_to_docstore_id, **kwargs
|
|
)
|
|
|
|
def _select_relevance_score_fn(self) -> Callable[[float], float]:
|
|
"""
|
|
The 'correct' relevance function
|
|
may differ depending on a few things, including:
|
|
- the distance / similarity metric used by the VectorStore
|
|
- the scale of your embeddings (OpenAI's are unit normed. Many others are not!)
|
|
- embedding dimensionality
|
|
- etc.
|
|
"""
|
|
if self.override_relevance_score_fn is not None:
|
|
return self.override_relevance_score_fn
|
|
|
|
# Default strategy is to rely on distance strategy provided in
|
|
# vectorstore constructor
|
|
if self.distance_strategy == DistanceStrategy.MAX_INNER_PRODUCT:
|
|
return self._max_inner_product_relevance_score_fn
|
|
elif self.distance_strategy == DistanceStrategy.EUCLIDEAN_DISTANCE:
|
|
# Default behavior is to use euclidean distance relevancy
|
|
return self._euclidean_relevance_score_fn
|
|
else:
|
|
raise ValueError(
|
|
"Unknown distance strategy, must be cosine, max_inner_product,"
|
|
" or euclidean"
|
|
)
|
|
|
|
def _similarity_search_with_relevance_scores(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
filter: Optional[Dict[str, Any]] = None,
|
|
fetch_k: int = 20,
|
|
**kwargs: Any,
|
|
) -> List[Tuple[Document, float]]:
|
|
"""Return docs and their similarity scores on a scale from 0 to 1."""
|
|
# Pop score threshold so that only relevancy scores, not raw scores, are
|
|
# filtered.
|
|
relevance_score_fn = self._select_relevance_score_fn()
|
|
if relevance_score_fn is None:
|
|
raise ValueError(
|
|
"normalize_score_fn must be provided to"
|
|
" FAISS constructor to normalize scores"
|
|
)
|
|
docs_and_scores = self.similarity_search_with_score(
|
|
query,
|
|
k=k,
|
|
filter=filter,
|
|
fetch_k=fetch_k,
|
|
**kwargs,
|
|
)
|
|
docs_and_rel_scores = [
|
|
(doc, relevance_score_fn(score)) for doc, score in docs_and_scores
|
|
]
|
|
return docs_and_rel_scores
|