179 lines
8.2 KiB
Python
179 lines
8.2 KiB
Python
from pydantic import BaseModel
|
|
from typing import List, Union
|
|
import re
|
|
import json
|
|
import traceback
|
|
import copy
|
|
from loguru import logger
|
|
|
|
from langchain.prompts.chat import ChatPromptTemplate
|
|
|
|
from dev_opsgpt.connector.schema import (
|
|
Memory, Task, Env, Role, Message, ActionStatus
|
|
)
|
|
from dev_opsgpt.llm_models import getChatModel
|
|
from dev_opsgpt.connector.configs.agent_config import REACT_PROMPT_INPUT
|
|
|
|
from .base_agent import BaseAgent
|
|
|
|
|
|
class ReactAgent(BaseAgent):
|
|
def __init__(
|
|
self,
|
|
role: Role,
|
|
task: Task = None,
|
|
memory: Memory = None,
|
|
chat_turn: int = 1,
|
|
do_search: bool = False,
|
|
do_doc_retrieval: bool = False,
|
|
do_tool_retrieval: bool = False,
|
|
temperature: float = 0.2,
|
|
stop: Union[List[str], str] = None,
|
|
do_filter: bool = True,
|
|
do_use_self_memory: bool = True,
|
|
focus_agents: List[str] = [],
|
|
focus_message_keys: List[str] = [],
|
|
# prompt_mamnger: PromptManager
|
|
):
|
|
|
|
super().__init__(role, task, memory, chat_turn, do_search, do_doc_retrieval,
|
|
do_tool_retrieval, temperature, stop, do_filter,do_use_self_memory,
|
|
focus_agents, focus_message_keys
|
|
)
|
|
|
|
def run(self, query: Message, history: Memory = None, background: Memory = None, memory_pool: Memory = None) -> Message:
|
|
'''agent reponse from multi-message'''
|
|
for message in self.arun(query, history, background, memory_pool):
|
|
pass
|
|
return message
|
|
|
|
def arun(self, query: Message, history: Memory = None, background: Memory = None, memory_pool: Memory = None) -> Message:
|
|
'''agent reponse from multi-message'''
|
|
step_nums = copy.deepcopy(self.chat_turn)
|
|
react_memory = Memory(messages=[])
|
|
# insert query
|
|
output_message = Message(
|
|
role_name=self.role.role_name,
|
|
role_type="ai", #self.role.role_type,
|
|
role_content=query.input_query,
|
|
step_content="",
|
|
input_query=query.input_query,
|
|
tools=query.tools,
|
|
parsed_output_list=[query.parsed_output],
|
|
customed_kargs=query.customed_kargs
|
|
)
|
|
query_c = copy.deepcopy(query)
|
|
query_c = self.start_action_step(query_c)
|
|
if query.parsed_output:
|
|
query_c.parsed_output = {"Question": "\n".join([f"{v}" for k, v in query.parsed_output.items() if k not in ["Action Status"]])}
|
|
else:
|
|
query_c.parsed_output = {"Question": query.input_query}
|
|
react_memory.append(query_c)
|
|
self_memory = self.memory if self.do_use_self_memory else None
|
|
idx = 0
|
|
# start to react
|
|
while step_nums > 0:
|
|
output_message.role_content = output_message.step_content
|
|
prompt = self.create_prompt(query, self_memory, history, background, react_memory, memory_pool)
|
|
try:
|
|
content = self.llm.predict(prompt)
|
|
except Exception as e:
|
|
logger.warning(f"error prompt: {prompt}")
|
|
raise Exception(traceback.format_exc())
|
|
|
|
output_message.role_content = "\n"+content
|
|
output_message.step_content += "\n"+output_message.role_content
|
|
yield output_message
|
|
|
|
# logger.debug(f"{self.role.role_name}, {idx} iteration prompt: {prompt}")
|
|
logger.info(f"{self.role.role_name}, {idx} iteration step_run: {output_message.role_content}")
|
|
|
|
output_message = self.message_utils.parser(output_message)
|
|
# when get finished signal can stop early
|
|
if output_message.action_status == ActionStatus.FINISHED or output_message.action_status == ActionStatus.STOPED: break
|
|
# according the output to choose one action for code_content or tool_content
|
|
output_message, observation_message = self.message_utils.step_router(output_message)
|
|
output_message.parsed_output_list.append(output_message.parsed_output)
|
|
|
|
react_message = copy.deepcopy(output_message)
|
|
react_memory.append(react_message)
|
|
if observation_message:
|
|
react_memory.append(observation_message)
|
|
output_message.parsed_output_list.append(observation_message.parsed_output)
|
|
# logger.debug(f"{observation_message.role_name} content: {observation_message.role_content}")
|
|
# logger.info(f"{self.role.role_name} currenct question: {output_message.input_query}\nllm_react_run: {output_message.role_content}")
|
|
|
|
idx += 1
|
|
step_nums -= 1
|
|
yield output_message
|
|
# react' self_memory saved at last
|
|
self.append_history(output_message)
|
|
# update memory pool
|
|
# memory_pool.append(output_message)
|
|
output_message.input_query = query.input_query
|
|
# end_action_step
|
|
output_message = self.end_action_step(output_message)
|
|
# update memory pool
|
|
memory_pool.append(output_message)
|
|
yield output_message
|
|
|
|
def create_prompt(
|
|
self, query: Message, memory: Memory =None, history: Memory = None, background: Memory = None, react_memory: Memory = None, memory_pool: Memory= None,
|
|
prompt_mamnger=None) -> str:
|
|
'''
|
|
role\task\tools\docs\memory
|
|
'''
|
|
#
|
|
doc_infos = self.create_doc_prompt(query)
|
|
code_infos = self.create_codedoc_prompt(query)
|
|
#
|
|
formatted_tools, tool_names, _ = self.create_tools_prompt(query)
|
|
task_prompt = self.create_task_prompt(query)
|
|
background_prompt = self.create_background_prompt(background)
|
|
history_prompt = self.create_history_prompt(history)
|
|
selfmemory_prompt = self.create_selfmemory_prompt(memory, control_key="step_content")
|
|
#
|
|
# extra_system_prompt = self.role.role_prompt
|
|
prompt = self.role.role_prompt.format(**{"formatted_tools": formatted_tools, "tool_names": tool_names})
|
|
|
|
# react 流程是自身迭代过程,另外二次触发的是需要作为历史对话信息
|
|
# input_query = react_memory.to_tuple_messages(content_key="step_content")
|
|
# # input_query = query.input_query + "\n" + "\n".join([f"{v}" for k, v in input_query if v])
|
|
# input_query = "\n".join([f"{v}" for k, v in input_query if v])
|
|
input_query = "\n".join(["\n".join([f"**{k}:**\n{v}" for k,v in _dict.items()]) for _dict in react_memory.get_parserd_output()])
|
|
# logger.debug(f"input_query: {input_query}")
|
|
|
|
prompt += "\n" + REACT_PROMPT_INPUT.format(**{"query": input_query})
|
|
|
|
task = query.task or self.task
|
|
# if task_prompt is not None:
|
|
# prompt += "\n" + task.task_prompt
|
|
|
|
# if doc_infos is not None and doc_infos!="" and doc_infos!="不存在知识库辅助信息":
|
|
# prompt += f"\n知识库信息: {doc_infos}"
|
|
|
|
# if code_infos is not None and code_infos!="" and code_infos!="不存在代码库辅助信息":
|
|
# prompt += f"\n代码库信息: {code_infos}"
|
|
|
|
# if background_prompt:
|
|
# prompt += "\n" + background_prompt
|
|
|
|
# if history_prompt:
|
|
# prompt += "\n" + history_prompt
|
|
|
|
# if selfmemory_prompt:
|
|
# prompt += "\n" + selfmemory_prompt
|
|
|
|
# logger.debug(f"{self.role.role_name} extra_system_prompt: {self.role.role_prompt}")
|
|
# logger.debug(f"{self.role.role_name} input_query: {input_query}")
|
|
# logger.debug(f"{self.role.role_name} doc_infos: {doc_infos}")
|
|
# logger.debug(f"{self.role.role_name} tool_names: {tool_names}")
|
|
# prompt += "\n" + REACT_PROMPT_INPUT.format(**{"query": input_query})
|
|
|
|
# prompt = extra_system_prompt.format(**{"query": input_query, "doc_infos": doc_infos, "formatted_tools": formatted_tools, "tool_names": tool_names})
|
|
while "{{" in prompt or "}}" in prompt:
|
|
prompt = prompt.replace("{{", "{")
|
|
prompt = prompt.replace("}}", "}")
|
|
return prompt
|
|
|