93 lines
3.2 KiB
Python
93 lines
3.2 KiB
Python
import sys
|
|
from fastchat.conversation import Conversation
|
|
from .base import *
|
|
from fastchat import conversation as conv
|
|
import json
|
|
from typing import List, Dict
|
|
from configs import logger
|
|
import openai
|
|
|
|
from langchain import PromptTemplate, LLMChain
|
|
from langchain.prompts.chat import ChatPromptTemplate
|
|
from langchain.chat_models import ChatOpenAI
|
|
from langchain.schema import HumanMessage
|
|
|
|
|
|
class ExampleWorker(ApiModelWorker):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
controller_addr: str = None,
|
|
worker_addr: str = None,
|
|
model_names: List[str] = ["gpt-3.5-turbo"],
|
|
version: str = "gpt-3.5",
|
|
**kwargs,
|
|
):
|
|
kwargs.update(model_names=model_names, controller_addr=controller_addr, worker_addr=worker_addr)
|
|
kwargs.setdefault("context_len", 16384) #TODO 16K模型需要改成16384
|
|
super().__init__(**kwargs)
|
|
self.version = version
|
|
|
|
def do_chat(self, params: ApiChatParams) -> Dict:
|
|
'''
|
|
yield output: {"error_code": 0, "text": ""}
|
|
'''
|
|
params.load_config(self.model_names[0])
|
|
openai.api_key = params.api_key
|
|
openai.api_base = params.api_base_url
|
|
|
|
logger.error(f"{params.api_key}, {params.api_base_url}, {params.messages} {params.max_tokens},")
|
|
# just for example
|
|
prompt = "\n".join([f"{m['role']}:{m['content']}" for m in params.messages])
|
|
logger.error(f"{prompt}, {params.temperature}, {params.max_tokens}")
|
|
try:
|
|
model = ChatOpenAI(
|
|
streaming=True,
|
|
verbose=True,
|
|
openai_api_key= params.api_key,
|
|
openai_api_base=params.api_base_url,
|
|
model_name=params.version
|
|
)
|
|
chat_prompt = ChatPromptTemplate.from_messages([("human", "{input}")])
|
|
chain = LLMChain(prompt=chat_prompt, llm=model)
|
|
content = chain({"input": prompt})
|
|
logger.info(content)
|
|
except Exception as e:
|
|
logger.error(f"{e}")
|
|
yield {"error_code": 500, "text": "request error"}
|
|
|
|
# return the text by yield for stream
|
|
try:
|
|
yield {"error_code": 0, "text": content["text"]}
|
|
except:
|
|
yield {"error_code": 500, "text": "request error"}
|
|
|
|
def get_embeddings(self, params):
|
|
# TODO: 支持embeddings
|
|
print("embedding")
|
|
print(params)
|
|
|
|
def make_conv_template(self, conv_template: str = None, model_path: str = None) -> Conversation:
|
|
# TODO: 确认模板是否需要修改
|
|
return conv.Conversation(
|
|
name=self.model_names[0],
|
|
system_message="You are a helpful, respectful and honest assistant.",
|
|
messages=[],
|
|
roles=["user", "assistant", "system"],
|
|
sep="\n### ",
|
|
stop_str="###",
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import uvicorn
|
|
from dev_opsgpt.utils.server_utils import MakeFastAPIOffline
|
|
from fastchat.serve.base_model_worker import app
|
|
|
|
worker = ExampleWorker(
|
|
controller_addr="http://127.0.0.1:20001",
|
|
worker_addr="http://127.0.0.1:21008",
|
|
)
|
|
sys.modules["fastchat.serve.model_worker"].worker = worker
|
|
uvicorn.run(app, port=21008)
|