120 lines
5.7 KiB
Python
120 lines
5.7 KiB
Python
from pydantic import BaseModel
|
|
from typing import List
|
|
import json
|
|
import re
|
|
from loguru import logger
|
|
import traceback
|
|
import uuid
|
|
import copy
|
|
|
|
from dev_opsgpt.connector.agents import BaseAgent, CheckAgent
|
|
from dev_opsgpt.tools.base_tool import BaseTools, Tool
|
|
|
|
from dev_opsgpt.connector.schema import (
|
|
Memory, Role, Message, ActionStatus, ChainConfig,
|
|
load_role_configs
|
|
)
|
|
from dev_opsgpt.connector.message_process import MessageUtils
|
|
|
|
from dev_opsgpt.connector.configs.agent_config import AGETN_CONFIGS
|
|
role_configs = load_role_configs(AGETN_CONFIGS)
|
|
|
|
|
|
class BaseChain:
|
|
def __init__(
|
|
self,
|
|
chainConfig: ChainConfig,
|
|
agents: List[BaseAgent],
|
|
chat_turn: int = 1,
|
|
do_checker: bool = False,
|
|
# prompt_mamnger: PromptManager
|
|
) -> None:
|
|
self.chainConfig = chainConfig
|
|
self.agents = agents
|
|
self.chat_turn = chat_turn
|
|
self.do_checker = do_checker
|
|
self.checker = CheckAgent(role=role_configs["checker"].role,
|
|
task = None,
|
|
memory = None,
|
|
do_search = role_configs["checker"].do_search,
|
|
do_doc_retrieval = role_configs["checker"].do_doc_retrieval,
|
|
do_tool_retrieval = role_configs["checker"].do_tool_retrieval,
|
|
do_filter=False, do_use_self_memory=False)
|
|
self.messageUtils = MessageUtils()
|
|
# all memory created by agent until instance deleted
|
|
self.global_memory = Memory(messages=[])
|
|
|
|
def step(self, query: Message, history: Memory = None, background: Memory = None, memory_pool: Memory = None) -> Message:
|
|
'''execute chain'''
|
|
for output_message, local_memory in self.astep(query, history, background, memory_pool):
|
|
pass
|
|
return output_message, local_memory
|
|
|
|
def astep(self, query: Message, history: Memory = None, background: Memory = None, memory_pool: Memory = None) -> Message:
|
|
'''execute chain'''
|
|
local_memory = Memory(messages=[])
|
|
input_message = copy.deepcopy(query)
|
|
step_nums = copy.deepcopy(self.chat_turn)
|
|
check_message = None
|
|
|
|
self.global_memory.append(input_message)
|
|
# local_memory.append(input_message)
|
|
while step_nums > 0:
|
|
for agent in self.agents:
|
|
for output_message in agent.arun(input_message, history, background=background, memory_pool=memory_pool):
|
|
# logger.debug(f"local_memory {local_memory + output_message}")
|
|
yield output_message, local_memory + output_message
|
|
|
|
output_message = self.messageUtils.inherit_extrainfo(input_message, output_message)
|
|
# according the output to choose one action for code_content or tool_content
|
|
# logger.info(f"{agent.role.role_name} currenct message: {output_message.step_content}\n next llm question: {output_message.input_query}")
|
|
output_message = self.messageUtils.parser(output_message)
|
|
yield output_message, local_memory + output_message
|
|
# output_message = self.step_router(output_message)
|
|
|
|
input_message = output_message
|
|
self.global_memory.append(output_message)
|
|
|
|
local_memory.append(output_message)
|
|
# when get finished signal can stop early
|
|
if output_message.action_status == ActionStatus.FINISHED or output_message.action_status == ActionStatus.STOPED:
|
|
action_status = False
|
|
break
|
|
|
|
if output_message.action_status == ActionStatus.FINISHED:
|
|
break
|
|
|
|
if self.do_checker and self.chat_turn > 1:
|
|
# logger.debug(f"{self.checker.role.role_name} input global memory: {self.global_memory.to_str_messages(content_key='step_content', return_all=False)}")
|
|
for check_message in self.checker.arun(query, background=local_memory, memory_pool=memory_pool):
|
|
pass
|
|
check_message = self.messageUtils.parser(check_message)
|
|
check_message = self.messageUtils.filter(check_message)
|
|
check_message = self.messageUtils.inherit_extrainfo(output_message, check_message)
|
|
logger.debug(f"{self.checker.role.role_name}: {check_message.role_content}")
|
|
|
|
if check_message.action_status == ActionStatus.FINISHED:
|
|
self.global_memory.append(check_message)
|
|
break
|
|
|
|
step_nums -= 1
|
|
#
|
|
output_message = check_message or output_message # 返回chain和checker的结果
|
|
output_message.input_query = query.input_query # chain和chain之间消息通信不改变问题
|
|
yield output_message, local_memory
|
|
|
|
def get_memory(self, content_key="role_content") -> Memory:
|
|
memory = self.global_memory
|
|
return memory.to_tuple_messages(content_key=content_key)
|
|
|
|
def get_memory_str(self, content_key="role_content") -> Memory:
|
|
memory = self.global_memory
|
|
# for i in memory.to_tuple_messages(content_key=content_key):
|
|
# logger.debug(f"{i}")
|
|
return "\n".join([": ".join(i) for i in memory.to_tuple_messages(content_key=content_key)])
|
|
|
|
def get_agents_memory(self, content_key="role_content"):
|
|
return [agent.get_memory(content_key=content_key) for agent in self.agents]
|
|
|
|
def get_agents_memory_str(self, content_key="role_content"):
|
|
return "************".join([f"{agent.role.role_name}\n" + agent.get_memory_str(content_key=content_key) for agent in self.agents]) |