codefuse-chatbot/configs/server_config.py.example

183 lines
5.9 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from .model_config import LLM_MODEL, LLM_DEVICE
import os, json
try:
cur_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)))
with open(os.path.join(cur_dir, "local_config.json"), "r") as f:
update_config = json.load(f)
except:
update_config = {}
# API 是否开启跨域默认为False如果需要开启请设置为True
# is open cross domain
OPEN_CROSS_DOMAIN = False
# 是否用容器来启动服务
try:
DOCKER_SERVICE = json.loads(os.environ["DOCKER_SERVICE"]) or update_config.get("DOCKER_SERVICE") or False
except:
DOCKER_SERVICE = True
# 是否采用容器沙箱
try:
SANDBOX_DO_REMOTE = json.loads(os.environ["SANDBOX_DO_REMOTE"]) or update_config.get("SANDBOX_DO_REMOTE") or False
except:
SANDBOX_DO_REMOTE = True
# 是否采用api服务来进行
NO_REMOTE_API = True
# 各服务器默认绑定host
DEFAULT_BIND_HOST = "127.0.0.1"
os.environ["DEFAULT_BIND_HOST"] = DEFAULT_BIND_HOST
#
CONTRAINER_NAME = "devopsgpt_webui"
IMAGE_NAME = "devopsgpt:py39"
# webui.py server
WEBUI_SERVER = {
"host": DEFAULT_BIND_HOST,
"port": 8501,
"docker_port": 8501
}
# api.py server
API_SERVER = {
"host": DEFAULT_BIND_HOST,
"port": 7861,
"docker_port": 7861
}
# sdfile_api.py server
SDFILE_API_SERVER = {
"host": DEFAULT_BIND_HOST,
"port": 7862,
"docker_port": 7862
}
# fastchat openai_api server
FSCHAT_OPENAI_API = {
"host": DEFAULT_BIND_HOST,
"port": 8888, # model_config.llm_model_dict中模型配置的api_base_url需要与这里一致。
"docker_port": 8888, # model_config.llm_model_dict中模型配置的api_base_url需要与这里一致。
}
# nebula conf
NEBULA_HOST = DEFAULT_BIND_HOST
NEBULA_PORT = 9669
NEBULA_STORAGED_PORT = 9779
NEBULA_USER = 'root'
NEBULA_PASSWORD = ''
NEBULA_GRAPH_SERVER = {
"host": DEFAULT_BIND_HOST,
"port": NEBULA_PORT,
"docker_port": NEBULA_PORT
}
# sandbox api server
SANDBOX_CONTRAINER_NAME = "devopsgpt_sandbox"
SANDBOX_IMAGE_NAME = "devopsgpt:py39"
SANDBOX_HOST = os.environ.get("SANDBOX_HOST") or update_config.get("SANDBOX_HOST") or DEFAULT_BIND_HOST # "172.25.0.3"
SANDBOX_SERVER = {
"host": f"http://{SANDBOX_HOST}",
"port": 5050,
"docker_port": 5050,
"url": f"http://{SANDBOX_HOST}:5050",
"do_remote": SANDBOX_DO_REMOTE,
}
# fastchat model_worker server
# 这些模型必须是在model_config.llm_model_dict中正确配置的。
# 在启动startup.py时可用通过`--model-worker --model-name xxxx`指定模型不指定则为LLM_MODEL
# 建议使用chat模型不要使用base无法获取正确输出
FSCHAT_MODEL_WORKERS = json.loads(os.environ.get("FSCHAT_MODEL_WORKERS")) if os.environ.get("FSCHAT_MODEL_WORKERS") else {}
FSCHAT_MODEL_WORKERS = FSCHAT_MODEL_WORKERS or update_config.get("FSCHAT_MODEL_WORKERS")
FSCHAT_MODEL_WORKERS = FSCHAT_MODEL_WORKERS or {
"default": {
"host": DEFAULT_BIND_HOST,
"port": 20002,
"device": LLM_DEVICE,
# todo: 多卡加载需要配置的参数
"gpus": None,
"numgpus": 1,
# 以下为非常用参数,可根据需要配置
# "max_gpu_memory": "20GiB",
# "load_8bit": False,
# "cpu_offloading": None,
# "gptq_ckpt": None,
# "gptq_wbits": 16,
# "gptq_groupsize": -1,
# "gptq_act_order": False,
# "awq_ckpt": None,
# "awq_wbits": 16,
# "awq_groupsize": -1,
# "model_names": [LLM_MODEL],
# "conv_template": None,
# "limit_worker_concurrency": 5,
# "stream_interval": 2,
# "no_register": False,
},
'codellama_34b': {'host': DEFAULT_BIND_HOST, 'port': 20002},
'Baichuan2-13B-Base': {'host': DEFAULT_BIND_HOST, 'port': 20003},
'Baichuan2-13B-Chat': {'host': DEFAULT_BIND_HOST, 'port': 20004},
'baichuan2-7b-base': {'host': DEFAULT_BIND_HOST, 'port': 20005},
'baichuan2-7b-chat': {'host': DEFAULT_BIND_HOST, 'port': 20006},
'internlm-7b-base': {'host': DEFAULT_BIND_HOST, 'port': 20007},
'internlm-chat-7b': {'host': DEFAULT_BIND_HOST, 'port': 20008},
'chatglm2-6b': {'host': DEFAULT_BIND_HOST, 'port': 20009},
'qwen-14b-base': {'host': DEFAULT_BIND_HOST, 'port': 20010},
'qwen-14b-chat': {'host': DEFAULT_BIND_HOST, 'port': 20011},
'qwen-1-8B-Chat': {'host': DEFAULT_BIND_HOST, 'port': 20012},
'Qwen-7B': {'host': DEFAULT_BIND_HOST, 'port': 20013},
'Qwen-7B-Chat': {'host': DEFAULT_BIND_HOST, 'port': 20014},
'qwen-7b-base-v1.1': {'host': DEFAULT_BIND_HOST, 'port': 20015},
'qwen-7b-chat-v1.1': {'host': DEFAULT_BIND_HOST, 'port': 20016},
'chatglm3-6b': {'host': DEFAULT_BIND_HOST, 'port': 20017},
'chatglm3-6b-32k': {'host': DEFAULT_BIND_HOST, 'port': 20018},
'chatglm3-6b-base': {'host': DEFAULT_BIND_HOST, 'port': 20019},
'Qwen-72B-Chat-Int4': {'host': DEFAULT_BIND_HOST, 'port': 20020},
'gpt-3.5-turbo': {'host': DEFAULT_BIND_HOST, 'port': 20021},
'example': {'host': DEFAULT_BIND_HOST, 'port': 20022},
'openai-api': {'host': DEFAULT_BIND_HOST, 'port': 20023}
}
# fastchat multi model worker server
FSCHAT_MULTI_MODEL_WORKERS = {
# todo
}
# fastchat controller server
FSCHAT_CONTROLLER = {
"host": DEFAULT_BIND_HOST,
"port": 20001,
"dispatch_method": "shortest_queue",
}
# 以下不要更改
def fschat_controller_address() -> str:
host = FSCHAT_CONTROLLER["host"]
port = FSCHAT_CONTROLLER["port"]
return f"http://{host}:{port}"
def fschat_model_worker_address(model_name: str = LLM_MODEL) -> str:
if model := FSCHAT_MODEL_WORKERS.get(model_name):
host = model["host"]
port = model["port"]
return f"http://{host}:{port}"
def fschat_openai_api_address() -> str:
host = FSCHAT_OPENAI_API["host"]
port = FSCHAT_OPENAI_API["port"]
return f"http://{host}:{port}"
def api_address() -> str:
host = API_SERVER["host"]
port = API_SERVER["port"]
return f"http://{host}:{port}"
def webui_address() -> str:
host = WEBUI_SERVER["host"]
port = WEBUI_SERVER["port"]
return f"http://{host}:{port}"