196 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			196 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| import os
 | ||
| import sys
 | ||
| import logging
 | ||
| import torch
 | ||
| import openai
 | ||
| import base64
 | ||
| import json
 | ||
| from .utils import is_running_in_docker
 | ||
| from .default_config import *
 | ||
| # 日志格式
 | ||
| LOG_FORMAT = "%(asctime)s - %(filename)s[line:%(lineno)d] - %(levelname)s: %(message)s"
 | ||
| logger = logging.getLogger()
 | ||
| logger.setLevel(logging.INFO)
 | ||
| logging.basicConfig(format=LOG_FORMAT)
 | ||
| 
 | ||
| VERSION = "v0.1.0"
 | ||
| 
 | ||
| import platform
 | ||
| system_name = platform.system()
 | ||
| 
 | ||
| try:
 | ||
|     # ignore these content
 | ||
|     from zdatafront import client, monkey, OPENAI_API_BASE
 | ||
|     # patch openai sdk
 | ||
|     monkey.patch_openai()
 | ||
|     secret_key = base64.b64decode('xx').decode('utf-8')
 | ||
|     # zdatafront 提供的统一加密密钥
 | ||
|     client.aes_secret_key = secret_key
 | ||
|     # zdatafront 分配的业务标记
 | ||
|     client.visit_domain = os.environ.get("visit_domain")
 | ||
|     client.visit_biz = os.environ.get("visit_biz")
 | ||
|     client.visit_biz_line = os.environ.get("visit_biz_line")
 | ||
| except Exception as e:
 | ||
|     OPENAI_API_BASE = "https://api.openai.com/v1"
 | ||
|     logger.error(e)
 | ||
|     pass
 | ||
| 
 | ||
| 
 | ||
| try:
 | ||
|     cur_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)))
 | ||
|     with open(os.path.join(cur_dir, "local_config.json"), "r") as f:
 | ||
|         update_config = json.load(f)
 | ||
| except:
 | ||
|     update_config = {}
 | ||
| 
 | ||
| 
 | ||
| # add your openai key
 | ||
| os.environ["API_BASE_URL"] = os.environ.get("API_BASE_URL") or update_config.get("API_BASE_URL") or OPENAI_API_BASE
 | ||
| os.environ["OPENAI_API_KEY"] = os.environ.get("OPENAI_API_KEY") or update_config.get("OPENAI_API_KEY") or "sk-xx"
 | ||
| openai.api_key = os.environ["OPENAI_API_KEY"]
 | ||
| # os.environ["OPENAI_PROXY"] = "socks5h://127.0.0.1:13659"
 | ||
| os.environ["DUCKDUCKGO_PROXY"] = os.environ.get("DUCKDUCKGO_PROXY") or update_config.get("DUCKDUCKGO_PROXY") or "socks5h://127.0.0.1:13659"
 | ||
| # ignore if you dont's use baidu_ocr_api
 | ||
| os.environ["BAIDU_OCR_API_KEY"] = "xx"
 | ||
| os.environ["BAIDU_OCR_SECRET_KEY"] = "xx"
 | ||
| 
 | ||
| os.environ["log_verbose"] = "2"
 | ||
| # LLM 名称
 | ||
| EMBEDDING_ENGINE = os.environ.get("EMBEDDING_ENGINE") or update_config.get("EMBEDDING_ENGINE") or 'model'  # openai or model
 | ||
| EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL") or update_config.get("EMBEDDING_MODEL") or "text2vec-base"
 | ||
| LLM_MODEL = os.environ.get("LLM_MODEL") or "gpt-3.5-turbo"
 | ||
| LLM_MODELs = [LLM_MODEL]
 | ||
| USE_FASTCHAT = "gpt" not in LLM_MODEL # 判断是否进行fastchat
 | ||
| 
 | ||
| # LLM 运行设备
 | ||
| LLM_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
 | ||
| 
 | ||
| # 在以下字典中修改属性值,以指定本地embedding模型存储位置
 | ||
| # 如将 "text2vec": "GanymedeNil/text2vec-large-chinese" 修改为 "text2vec": "User/Downloads/text2vec-large-chinese"
 | ||
| # 此处请写绝对路径
 | ||
| embedding_model_dict = json.loads(os.environ.get("embedding_model_dict")) if os.environ.get("embedding_model_dict") else {}
 | ||
| embedding_model_dict = embedding_model_dict or update_config.get("embedding_model_dict")
 | ||
| embedding_model_dict = embedding_model_dict or {
 | ||
|     "ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
 | ||
|     "ernie-base": "nghuyong/ernie-3.0-base-zh",
 | ||
|     "text2vec-base": "text2vec-base-chinese",
 | ||
|     "text2vec": "GanymedeNil/text2vec-large-chinese",
 | ||
|     "text2vec-paraphrase": "shibing624/text2vec-base-chinese-paraphrase",
 | ||
|     "text2vec-sentence": "shibing624/text2vec-base-chinese-sentence",
 | ||
|     "text2vec-multilingual": "shibing624/text2vec-base-multilingual",
 | ||
|     "m3e-small": "moka-ai/m3e-small",
 | ||
|     "m3e-base": "moka-ai/m3e-base",
 | ||
|     "m3e-large": "moka-ai/m3e-large",
 | ||
|     "bge-small-zh": "BAAI/bge-small-zh",
 | ||
|     "bge-base-zh": "BAAI/bge-base-zh",
 | ||
|     "bge-large-zh": "BAAI/bge-large-zh"
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| # LOCAL_MODEL_DIR = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "embedding_models")
 | ||
| # embedding_model_dict = {k: f"/home/user/chatbot/embedding_models/{v}" if is_running_in_docker() else f"{LOCAL_MODEL_DIR}/{v}" for k, v in embedding_model_dict.items()}
 | ||
| 
 | ||
| # Embedding 模型运行设备
 | ||
| EMBEDDING_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
 | ||
| 
 | ||
| ONLINE_LLM_MODEL = json.loads(os.environ.get("ONLINE_LLM_MODEL")) if os.environ.get("ONLINE_LLM_MODEL") else {}
 | ||
| ONLINE_LLM_MODEL = ONLINE_LLM_MODEL or update_config.get("ONLINE_LLM_MODEL")
 | ||
| ONLINE_LLM_MODEL = ONLINE_LLM_MODEL  or {
 | ||
|     # 线上模型。请在server_config中为每个在线API设置不同的端口
 | ||
| 
 | ||
|     "openai-api": {
 | ||
|         "model_name": "gpt-3.5-turbo",
 | ||
|         "api_base_url": OPENAI_API_BASE, # "https://api.openai.com/v1",
 | ||
|         "api_key": "",
 | ||
|         "openai_proxy": "",
 | ||
|     },
 | ||
|     "example": {
 | ||
|         "version": "gpt-3.5-turbo",  # 采用openai接口做示例
 | ||
|         "api_base_url": OPENAI_API_BASE, # "https://api.openai.com/v1",
 | ||
|         "api_key": "",
 | ||
|         "provider": "ExampleWorker",
 | ||
|     },
 | ||
| }
 | ||
| 
 | ||
| # 建议使用chat模型,不要使用base,无法获取正确输出
 | ||
| llm_model_dict = json.loads(os.environ.get("llm_model_dict")) if os.environ.get("llm_model_dict") else {}
 | ||
| llm_model_dict = llm_model_dict or update_config.get("llm_model_dict")
 | ||
| llm_model_dict = llm_model_dict or {
 | ||
|     "chatglm-6b": {
 | ||
|         "local_model_path": "THUDM/chatglm-6b",
 | ||
|         "api_base_url": "http://localhost:8888/v1",  # "name"修改为fastchat服务中的"api_base_url"
 | ||
|         "api_key": "EMPTY"
 | ||
|     },
 | ||
|     # 以下模型经过测试可接入,配置仿照上述即可
 | ||
|     # 'codellama_34b', 'Baichuan2-13B-Base', 'Baichuan2-13B-Chat', 'baichuan2-7b-base', 'baichuan2-7b-chat', 
 | ||
|     # 'internlm-7b-base', 'internlm-chat-7b', 'chatglm2-6b', 'qwen-14b-base', 'qwen-14b-chat', 'qwen-1-8B-Chat', 
 | ||
|     # 'Qwen-7B', 'Qwen-7B-Chat', 'qwen-7b-base-v1.1', 'qwen-7b-chat-v1.1', 'chatglm3-6b', 'chatglm3-6b-32k', 
 | ||
|     # 'chatglm3-6b-base', 'Qwen-72B-Chat-Int4'
 | ||
|     # 调用chatgpt时如果报出: urllib3.exceptions.MaxRetryError: HTTPSConnectionPool(host='api.openai.com', port=443):
 | ||
|     #  Max retries exceeded with url: /v1/chat/completions
 | ||
|     # 则需要将urllib3版本修改为1.25.11
 | ||
|     # 如果依然报urllib3.exceptions.MaxRetryError: HTTPSConnectionPool,则将https改为http
 | ||
|     # 参考https://zhuanlan.zhihu.com/p/350015032
 | ||
| 
 | ||
|     # 如果报出:raise NewConnectionError(
 | ||
|     # urllib3.exceptions.NewConnectionError: <urllib3.connection.HTTPSConnection object at 0x000001FE4BDB85E0>:
 | ||
|     # Failed to establish a new connection: [WinError 10060]
 | ||
|     # 则是因为内地和香港的IP都被OPENAI封了,需要切换为日本、新加坡等地
 | ||
|     "gpt-3.5-turbo": {
 | ||
|         "local_model_path": "gpt-3.5-turbo",
 | ||
|         "api_base_url": os.environ.get("API_BASE_URL"),
 | ||
|         "api_key": os.environ.get("OPENAI_API_KEY")
 | ||
|     },
 | ||
|     "gpt-3.5-turbo-16k": {
 | ||
|         "local_model_path": "gpt-3.5-turbo-16k",
 | ||
|         "api_base_url": os.environ.get("API_BASE_URL"),
 | ||
|         "api_key": os.environ.get("OPENAI_API_KEY")
 | ||
|     },
 | ||
|     "gpt-3.5-turbo-0613": {
 | ||
|         "local_model_path": "gpt-3.5-turbo-0613",
 | ||
|         "api_base_url": os.environ.get("API_BASE_URL"),
 | ||
|         "api_key": os.environ.get("OPENAI_API_KEY")
 | ||
|     },
 | ||
|     "gpt-4": {
 | ||
|         "local_model_path": "gpt-4",
 | ||
|         "api_base_url": os.environ.get("API_BASE_URL"),
 | ||
|         "api_key": os.environ.get("OPENAI_API_KEY")
 | ||
|     },
 | ||
|     "gpt-3.5-turbo-1106": {
 | ||
|         "local_model_path": "gpt-3.5-turbo-1106",
 | ||
|         "api_base_url": os.environ.get("API_BASE_URL"),
 | ||
|         "api_key": os.environ.get("OPENAI_API_KEY")
 | ||
|     },
 | ||
| }
 | ||
| 
 | ||
| # 建议使用chat模型,不要使用base,无法获取正确输出
 | ||
| VLLM_MODEL_DICT = json.loads(os.environ.get("VLLM_MODEL_DICT")) if os.environ.get("VLLM_MODEL_DICT") else {}
 | ||
| VLLM_MODEL_DICT = VLLM_MODEL_DICT or update_config.get("VLLM_MODEL_DICT")
 | ||
| VLLM_MODEL_DICT = VLLM_MODEL_DICT or {
 | ||
|  'chatglm2-6b':  "THUDM/chatglm-6b",
 | ||
|  }
 | ||
| # 以下模型经过测试可接入,配置仿照上述即可
 | ||
| # 'codellama_34b', 'Baichuan2-13B-Base', 'Baichuan2-13B-Chat', 'baichuan2-7b-base', 'baichuan2-7b-chat', 
 | ||
| # 'internlm-7b-base', 'internlm-chat-7b', 'chatglm2-6b', 'qwen-14b-base', 'qwen-14b-chat', 'qwen-1-8B-Chat', 
 | ||
| # 'Qwen-7B', 'Qwen-7B-Chat', 'qwen-7b-base-v1.1', 'qwen-7b-chat-v1.1', 'chatglm3-6b', 'chatglm3-6b-32k', 
 | ||
| # 'chatglm3-6b-base', 'Qwen-72B-Chat-Int4'
 | ||
| 
 | ||
| 
 | ||
| # LOCAL_LLM_MODEL_DIR = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "llm_models")
 | ||
| # # 模型路径重置
 | ||
| # llm_model_dict_c = {}
 | ||
| # for k, v in llm_model_dict.items():
 | ||
| #     v_c = {}
 | ||
| #     for kk, vv in v.items():
 | ||
| #         if k=="local_model_path":
 | ||
| #             v_c[kk] = f"/home/user/chatbot/llm_models/{vv}" if is_running_in_docker() else f"{LOCAL_LLM_MODEL_DIR}/{vv}" 
 | ||
| #         else:
 | ||
| #             v_c[kk] = vv
 | ||
| #     llm_model_dict_c[k] = v_c
 | ||
| 
 | ||
| # llm_model_dict = llm_model_dict_c
 | ||
| # # 
 | ||
| # VLLM_MODEL_DICT_c = {}
 | ||
| # for k, v in VLLM_MODEL_DICT.items():
 | ||
| #     VLLM_MODEL_DICT_c[k] = f"/home/user/chatbot/llm_models/{v}" if is_running_in_docker() else f"{LOCAL_LLM_MODEL_DIR}/{v}" 
 | ||
| # VLLM_MODEL_DICT = VLLM_MODEL_DICT_c |