import os, sys src_dir = os.path.join( os.path.dirname(os.path.dirname(os.path.abspath(__file__))) ) sys.path.append(src_dir) from configs.model_config import llm_model_dict, LLM_MODEL import openai # os.environ["OPENAI_PROXY"] = "socks5h://127.0.0.1:7890" # os.environ["OPENAI_PROXY"] = "http://127.0.0.1:7890" # os.environ["OPENAI_API_KEY"] = "" if __name__ == "__main__": # print("dsadsa", os.environ.get("OPENAI_PROXY"), os.environ.get("OPENAI_API_KEY")) from langchain import PromptTemplate, LLMChain from langchain.prompts.chat import ChatPromptTemplate from langchain.chat_models import ChatOpenAI from langchain.schema import HumanMessage # chat = ChatOpenAI(temperature=0.1, model_name="gpt-3.5-turbo") # print(chat.predict("hi!")) print(LLM_MODEL, llm_model_dict[LLM_MODEL]["api_key"], llm_model_dict[LLM_MODEL]["api_base_url"]) from langchain.chat_models import ChatOpenAI model = ChatOpenAI( streaming=True, verbose=True, openai_api_key="dsdadas", openai_api_base=llm_model_dict[LLM_MODEL]["api_base_url"], model_name=LLM_MODEL ) print(model.predict("hi!")) # chat_prompt = ChatPromptTemplate.from_messages([("human", "{input}")]) # chain = LLMChain(prompt=chat_prompt, llm=model) # content = chain({"input": "hello"}) # print(content) # import openai # # openai.api_key = "EMPTY" # Not support yet # openai.api_base = "http://127.0.0.1:8888/v1" # model = "example" # # create a chat completion # completion = openai.ChatCompletion.create( # model=model, # messages=[{"role": "user", "content": "Hello! What is your name? "}], # max_tokens=100, # ) # # print the completion # print(completion.choices[0].message.content)