import os import logging import torch # 日志格式 LOG_FORMAT = "%(asctime)s - %(filename)s[line:%(lineno)d] - %(levelname)s: %(message)s" logger = logging.getLogger() logger.setLevel(logging.INFO) logging.basicConfig(format=LOG_FORMAT) # os.environ["OPENAI_PROXY"] = "socks5h://127.0.0.1:13659" os.environ["API_BASE_URL"] = "http://openai.com/v1/chat/completions" os.environ["OPENAI_API_KEY"] = "" os.environ["DUCKDUCKGO_PROXY"] = "socks5://127.0.0.1:13659" os.environ["BAIDU_OCR_API_KEY"] = "" os.environ["BAIDU_OCR_SECRET_KEY"] = "" import platform system_name = platform.system() # 在以下字典中修改属性值,以指定本地embedding模型存储位置 # 如将 "text2vec": "GanymedeNil/text2vec-large-chinese" 修改为 "text2vec": "User/Downloads/text2vec-large-chinese" # 此处请写绝对路径 embedding_model_dict = { "ernie-tiny": "nghuyong/ernie-3.0-nano-zh", "ernie-base": "nghuyong/ernie-3.0-base-zh", "text2vec-base": "shibing624/text2vec-base-chinese", "text2vec": "GanymedeNil/text2vec-large-chinese", "text2vec-paraphrase": "shibing624/text2vec-base-chinese-paraphrase", "text2vec-sentence": "shibing624/text2vec-base-chinese-sentence", "text2vec-multilingual": "shibing624/text2vec-base-multilingual", "m3e-small": "moka-ai/m3e-small", "m3e-base": "moka-ai/m3e-base", "m3e-large": "moka-ai/m3e-large", "bge-small-zh": "BAAI/bge-small-zh", "bge-base-zh": "BAAI/bge-base-zh", "bge-large-zh": "BAAI/bge-large-zh" } LOCAL_MODEL_DIR = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "embedding_models") embedding_model_dict = {k: f"/home/user/chatbot/embedding_models/{v}" if is_running_in_docker() else f"{LOCAL_MODEL_DIR}/{v}" for k, v in embedding_model_dict.items()} # 选用的 Embedding 名称 EMBEDDING_ENGINE = 'openai' EMBEDDING_MODEL = "text2vec-base" # Embedding 模型运行设备 EMBEDDING_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" llm_model_dict = { "chatglm-6b": { "local_model_path": "THUDM/chatglm-6b", "api_base_url": "http://localhost:8888/v1", # "name"修改为fastchat服务中的"api_base_url" "api_key": "EMPTY" }, "chatglm-6b-int4": { "local_model_path": "THUDM/chatglm2-6b-int4/", "api_base_url": "http://localhost:8888/v1", # "name"修改为fastchat服务中的"api_base_url" "api_key": "EMPTY" }, "chatglm2-6b": { "local_model_path": "THUDM/chatglm2-6b", "api_base_url": "http://localhost:8888/v1", # URL需要与运行fastchat服务端的server_config.FSCHAT_OPENAI_API一致 "api_key": "EMPTY" }, "chatglm2-6b-int4": { "local_model_path": "THUDM/chatglm2-6b-int4", "api_base_url": "http://localhost:8888/v1", # URL需要与运行fastchat服务端的server_config.FSCHAT_OPENAI_API一致 "api_key": "EMPTY" }, "chatglm2-6b-32k": { "local_model_path": "THUDM/chatglm2-6b-32k", # "THUDM/chatglm2-6b-32k", "api_base_url": "http://localhost:8888/v1", # "URL需要与运行fastchat服务端的server_config.FSCHAT_OPENAI_API一致 "api_key": "EMPTY" }, "vicuna-13b-hf": { "local_model_path": "", "api_base_url": "http://localhost:8888/v1", # "name"修改为fastchat服务中的"api_base_url" "api_key": "EMPTY" }, # 调用chatgpt时如果报出: urllib3.exceptions.MaxRetryError: HTTPSConnectionPool(host='api.openai.com', port=443): # Max retries exceeded with url: /v1/chat/completions # 则需要将urllib3版本修改为1.25.11 # 如果依然报urllib3.exceptions.MaxRetryError: HTTPSConnectionPool,则将https改为http # 参考https://zhuanlan.zhihu.com/p/350015032 # 如果报出:raise NewConnectionError( # urllib3.exceptions.NewConnectionError: : # Failed to establish a new connection: [WinError 10060] # 则是因为内地和香港的IP都被OPENAI封了,需要切换为日本、新加坡等地 "gpt-3.5-turbo": { "local_model_path": "gpt-3.5-turbo", "api_base_url": os.environ.get("API_BASE_URL"), "api_key": os.environ.get("OPENAI_API_KEY") }, } LOCAL_LLM_MODEL_DIR = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "llm_models") llm_model_dict_c = {} for k, v in llm_model_dict.items(): v_c = {} for kk, vv in v.items(): if k=="local_model_path": v_c[kk] = f"/home/user/chatbot/llm_models/{vv}" if is_running_in_docker() else f"{LOCAL_LLM_MODEL_DIR}/{vv}" else: v_c[kk] = vv llm_model_dict_c[k] = v_c llm_model_dict = llm_model_dict_c # LLM 名称 LLM_MODEL = "gpt-3.5-turbo" USE_FASTCHAT = "gpt" not in LLM_MODEL # 判断是否进行fastchat # LLM 运行设备 LLM_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" # 日志存储路径 LOG_PATH = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "logs") if not os.path.exists(LOG_PATH): os.mkdir(LOG_PATH) # 知识库默认存储路径 SOURCE_PATH = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "sources") # 知识库默认存储路径 KB_ROOT_PATH = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "knowledge_base") # 代码库默认存储路径 CB_ROOT_PATH = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "code_base") # nltk 模型存储路径 NLTK_DATA_PATH = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "nltk_data") # 代码存储路径 JUPYTER_WORK_PATH = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "jupyter_work") # WEB_CRAWL存储路径 WEB_CRAWL_PATH = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "sources/docs") # NEBULA_DATA存储路径 NELUBA_PATH = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "data/neluba_data") for _path in [LOG_PATH, SOURCE_PATH, KB_ROOT_PATH, NLTK_DATA_PATH, JUPYTER_WORK_PATH, WEB_CRAWL_PATH, NELUBA_PATH]: if not os.path.exists(_path): os.makedirs(_path, exist_ok=True) # 数据库默认存储路径。 # 如果使用sqlite,可以直接修改DB_ROOT_PATH;如果使用其它数据库,请直接修改SQLALCHEMY_DATABASE_URI。 DB_ROOT_PATH = os.path.join(KB_ROOT_PATH, "info.db") SQLALCHEMY_DATABASE_URI = f"sqlite:///{DB_ROOT_PATH}" # 可选向量库类型及对应配置 kbs_config = { "faiss": { }, # "milvus": { # "host": "127.0.0.1", # "port": "19530", # "user": "", # "password": "", # "secure": False, # }, # "pg": { # "connection_uri": "postgresql://postgres:postgres@127.0.0.1:5432/langchain_chatchat", # } } # 默认向量库类型。可选:faiss, milvus, pg. DEFAULT_VS_TYPE = "faiss" # 缓存向量库数量 CACHED_VS_NUM = 1 # 知识库中单段文本长度 CHUNK_SIZE = 500 # 知识库中相邻文本重合长度 OVERLAP_SIZE = 50 # 知识库匹配向量数量 VECTOR_SEARCH_TOP_K = 5 # 知识库匹配相关度阈值,取值范围在0-1之间,SCORE越小,相关度越高,取到1相当于不筛选,建议设置在0.5左右 # Mac 可能存在无法使用normalized_L2的问题,因此调整SCORE_THRESHOLD至 0~1100 FAISS_NORMALIZE_L2 = True if system_name in ["Linux", "Windows"] else False SCORE_THRESHOLD = 1 if system_name in ["Linux", "Windows"] else 1100 # 搜索引擎匹配结题数量 SEARCH_ENGINE_TOP_K = 5 # 代码引擎匹配结题数量 CODE_SEARCH_TOP_K = 1 # 基于本地知识问答的提示词模版 PROMPT_TEMPLATE = """【指令】根据已知信息,简洁和专业的来回答问题。如果无法从中得到答案,请说 “根据已知信息无法回答该问题”,不允许在答案中添加编造成分,答案请使用中文。 【已知信息】{context} 【问题】{question}""" # 基于本地代码知识问答的提示词模版 CODE_PROMPT_TEMPLATE = """【指令】根据已知信息来回答问题。 【已知信息】{context} 【问题】{question}""" # 代码解释模版 CODE_INTERPERT_TEMPLATE = '''{code} 解释一下这段代码''' # API 是否开启跨域,默认为False,如果需要开启,请设置为True # is open cross domain OPEN_CROSS_DOMAIN = False # Bing 搜索必备变量 # 使用 Bing 搜索需要使用 Bing Subscription Key,需要在azure port中申请试用bing search # 具体申请方式请见 # https://learn.microsoft.com/en-us/bing/search-apis/bing-web-search/create-bing-search-service-resource # 使用python创建bing api 搜索实例详见: # https://learn.microsoft.com/en-us/bing/search-apis/bing-web-search/quickstarts/rest/python BING_SEARCH_URL = "https://api.bing.microsoft.com/v7.0/search" # 注意不是bing Webmaster Tools的api key, # 此外,如果是在服务器上,报Failed to establish a new connection: [Errno 110] Connection timed out # 是因为服务器加了防火墙,需要联系管理员加白名单,如果公司的服务器的话,就别想了GG BING_SUBSCRIPTION_KEY = "" # 是否开启中文标题加强,以及标题增强的相关配置 # 通过增加标题判断,判断哪些文本为标题,并在metadata中进行标记; # 然后将文本与往上一级的标题进行拼合,实现文本信息的增强。 ZH_TITLE_ENHANCE = False