from pydantic import BaseModel from typing import List import json import re from loguru import logger import traceback import uuid import copy from dev_opsgpt.connector.agents import BaseAgent, CheckAgent from dev_opsgpt.tools.base_tool import BaseTools, Tool from dev_opsgpt.connector.schema import ( Memory, Role, Message, ActionStatus, ChainConfig, load_role_configs ) from dev_opsgpt.connector.message_process import MessageUtils from dev_opsgpt.connector.configs.agent_config import AGETN_CONFIGS role_configs = load_role_configs(AGETN_CONFIGS) class BaseChain: def __init__( self, chainConfig: ChainConfig, agents: List[BaseAgent], chat_turn: int = 1, do_checker: bool = False, # prompt_mamnger: PromptManager ) -> None: self.chainConfig = chainConfig self.agents = agents self.chat_turn = chat_turn self.do_checker = do_checker self.checker = CheckAgent(role=role_configs["checker"].role, task = None, memory = None, do_search = role_configs["checker"].do_search, do_doc_retrieval = role_configs["checker"].do_doc_retrieval, do_tool_retrieval = role_configs["checker"].do_tool_retrieval, do_filter=False, do_use_self_memory=False) self.messageUtils = MessageUtils() # all memory created by agent until instance deleted self.global_memory = Memory(messages=[]) def step(self, query: Message, history: Memory = None, background: Memory = None, memory_pool: Memory = None) -> Message: '''execute chain''' for output_message, local_memory in self.astep(query, history, background, memory_pool): pass return output_message, local_memory def astep(self, query: Message, history: Memory = None, background: Memory = None, memory_pool: Memory = None) -> Message: '''execute chain''' local_memory = Memory(messages=[]) input_message = copy.deepcopy(query) step_nums = copy.deepcopy(self.chat_turn) check_message = None self.global_memory.append(input_message) # local_memory.append(input_message) while step_nums > 0: for agent in self.agents: for output_message in agent.arun(input_message, history, background=background, memory_pool=memory_pool): # logger.debug(f"local_memory {local_memory + output_message}") yield output_message, local_memory + output_message output_message = self.messageUtils.inherit_extrainfo(input_message, output_message) # according the output to choose one action for code_content or tool_content # logger.info(f"{agent.role.role_name} currenct message: {output_message.step_content}\n next llm question: {output_message.input_query}") output_message = self.messageUtils.parser(output_message) yield output_message, local_memory + output_message # output_message = self.step_router(output_message) input_message = output_message self.global_memory.append(output_message) local_memory.append(output_message) # when get finished signal can stop early if output_message.action_status == ActionStatus.FINISHED or output_message.action_status == ActionStatus.STOPED: action_status = False break if output_message.action_status == ActionStatus.FINISHED: break if self.do_checker and self.chat_turn > 1: # logger.debug(f"{self.checker.role.role_name} input global memory: {self.global_memory.to_str_messages(content_key='step_content', return_all=False)}") for check_message in self.checker.arun(query, background=local_memory, memory_pool=memory_pool): pass check_message = self.messageUtils.parser(check_message) check_message = self.messageUtils.filter(check_message) check_message = self.messageUtils.inherit_extrainfo(output_message, check_message) logger.debug(f"{self.checker.role.role_name}: {check_message.role_content}") if check_message.action_status == ActionStatus.FINISHED: self.global_memory.append(check_message) break step_nums -= 1 # output_message = check_message or output_message # 返回chain和checker的结果 output_message.input_query = query.input_query # chain和chain之间消息通信不改变问题 yield output_message, local_memory def get_memory(self, content_key="role_content") -> Memory: memory = self.global_memory return memory.to_tuple_messages(content_key=content_key) def get_memory_str(self, content_key="role_content") -> Memory: memory = self.global_memory # for i in memory.to_tuple_messages(content_key=content_key): # logger.debug(f"{i}") return "\n".join([": ".join(i) for i in memory.to_tuple_messages(content_key=content_key)]) def get_agents_memory(self, content_key="role_content"): return [agent.get_memory(content_key=content_key) for agent in self.agents] def get_agents_memory_str(self, content_key="role_content"): return "************".join([f"{agent.role.role_name}\n" + agent.get_memory_str(content_key=content_key) for agent in self.agents])