--- title: Connector Phase slug: Connector Phase ZH url: "coagent/connector-phase-zh" aliases: - "/coagent/connector-phase-zh" --- ## 快速构建一个 agent phase - 首先增加openai配置,也可以是其它类似于openai接口的模型(通过fastchat启动) ``` from coagent.base_configs.env_config import JUPYTER_WORK_PATH, KB_ROOT_PATH from coagent.llm_models.llm_config import EmbedConfig, LLMConfig from coagent.connector.configs import AGETN_CONFIGS from coagent.connector.phase import BasePhase from coagent.connector.schema import Message, load_role_configs os.environ["API_BASE_URL"] = OPENAI_API_BASE os.environ["OPENAI_API_KEY"] = "sk-xx" openai.api_key = "sk-xxx" # os.environ["OPENAI_PROXY"] = "socks5h://127.0.0.1:13659" os.environ["DUCKDUCKGO_PROXY"] = os.environ.get("DUCKDUCKGO_PROXY") or "socks5://127.0.0.1:13659" ``` - 配置相关 LLM 和 Embedding Model ``` # LLM 和 Embedding Model 配置 llm_config = LLMConfig( model_name="gpt-3.5-turbo", model_device="cpu",api_key=os.environ["OPENAI_API_KEY"], api_base_url=os.environ["API_BASE_URL"], temperature=0.3 ) embed_config = EmbedConfig( embed_engine="model", embed_model="text2vec-base-chinese", embed_model_path="D://project/gitlab/llm/external/ant_code/Codefuse-chatbot/embedding_models/text2vec-base-chinese" ) ``` - 这里从已有的 phase 配置中选一个 phase 来做示例 ``` # log-level,print prompt和llm predict os.environ["log_verbose"] = "2" phase_name = "searchChatPhase" phase = BasePhase( phase_name, embed_config=embed_config, llm_config=llm_config, ) # round-1 query_content1 = "美国当前总统是谁?" query = Message( role_name="human", role_type="user", role_content=query_content1, input_query=query_content1, origin_query=query_content1, search_engine_name="duckduckgo", score_threshold=1.0, top_k=3 ) output_message, output_memory = phase.step(query) print(output_memory.to_str_messages(return_all=True, content_key="parsed_output_list")) # round-2 query_content2 = "美国上一任总统是谁,两个人有什么关系没?" query = Message( role_name="human", role_type="user", role_content=query_content2, input_query=query_content2, origin_query=query_content2, search_engine_name="duckduckgo", score_threshold=1.0, top_k=3 ) output_message, output_memory = phase.step(query) print(output_memory.to_str_messages(return_all=True, content_key="parsed_output_list")) ``` ## Phase 参数配置 |Config Key Name |Type |Description| | ------------------ | ---------- | ---------- | |phase_name| String| 场景名称| |phase_config|CompletePhaseConfig| 默认为None,可直接指定完整的phaseconfig, 暂未实现| |llm_config |LLMConfig |大语言模型配置| |embed_config |EmbedConfig |向量模型配置| |sandbox_server |Dict |沙盒环境即notebook启动配置| |jupyter_work_path |str |沙盒环境的工作目录| |kb_root_path |str |memory的存储路径| |log_verbose |str |agent prompt&predict的日志打印级别| | base_phase_config | Union[dict, str] | 默认配置:PHASE_CONFIGS,可通过实现对这个变量新增来实现自定义配置 | | base_chain_config | Union[dict, str] | 默认配置:CHAIN_CONFIGS,可通过实现对这个变量新增来实现自定义配置 | | base_role_config | Union[dict, str] | 默认配置:AGETN_CONFIGS,可通过实现对这个变量新增来实现自定义配置 |