from typing import List, Union import copy import random from loguru import logger from langchain.schema import BaseRetriever from coagent.connector.schema import ( Memory, Task, Role, Message, PromptField, LogVerboseEnum ) from coagent.connector.memory_manager import BaseMemoryManager from coagent.connector.memory_manager import LocalMemoryManager from coagent.llm_models import LLMConfig, EmbedConfig from coagent.base_configs.env_config import JUPYTER_WORK_PATH, KB_ROOT_PATH from .base_agent import BaseAgent class SelectorAgent(BaseAgent): def __init__( self, role: Role, prompt_config: List[PromptField] = None, prompt_manager_type: str = "PromptManager", task: Task = None, memory: Memory = None, chat_turn: int = 1, focus_agents: List[str] = [], focus_message_keys: List[str] = [], group_agents: List[BaseAgent] = [], # llm_config: LLMConfig = None, embed_config: EmbedConfig = None, sandbox_server: dict = {}, jupyter_work_path: str = JUPYTER_WORK_PATH, kb_root_path: str = KB_ROOT_PATH, doc_retrieval: Union[BaseRetriever] = None, code_retrieval = None, search_retrieval = None, log_verbose: str = "0" ): super().__init__(role, prompt_config, prompt_manager_type, task, memory, chat_turn, focus_agents, focus_message_keys, llm_config, embed_config, sandbox_server, jupyter_work_path, kb_root_path, doc_retrieval, code_retrieval, search_retrieval, log_verbose ) self.group_agents = group_agents def astep(self, query: Message, history: Memory = None, background: Memory = None, memory_manager: BaseMemoryManager=None) -> Message: '''agent reponse from multi-message''' # insert query into memory query_c = copy.deepcopy(query) query_c = self.start_action_step(query_c) # create your llm prompt if memory_manager is None: memory_manager = LocalMemoryManager( unique_name=self.role.role_name, do_init=True, kb_root_path = self.kb_root_path, embed_config=self.embed_config, llm_config=self.embed_config ) memory_manager.append(query) memory_pool = memory_manager.get_memory_pool(query_c.user_name) prompt = self.prompt_manager.generate_full_prompt( previous_agent_message=query_c, agent_long_term_memory=self.memory, ui_history=history, chain_summary_messages=background, react_memory=None, memory_pool=memory_pool, agents=self.group_agents) content = self.llm.predict(prompt) if LogVerboseEnum.ge(LogVerboseEnum.Log2Level, self.log_verbose): logger.debug(f"{self.role.role_name} prompt: {prompt}") if LogVerboseEnum.ge(LogVerboseEnum.Log1Level, self.log_verbose): logger.info(f"{self.role.role_name} content: {content}") # select agent select_message = Message( role_name=self.role.role_name, role_type="assistant", #self.role.role_type, role_content=content, step_content=content, input_query=query_c.input_query, tools=query_c.tools, # parsed_output_list=[query_c.parsed_output] customed_kargs=query.customed_kargs ) # common parse llm' content to message select_message = self.message_utils.parser(select_message) select_message.parsed_output_list.append(select_message.parsed_output) output_message = None if select_message.parsed_output.get("Role", "") in [agent.role.role_name for agent in self.group_agents]: for agent in self.group_agents: if agent.role.role_name == select_message.parsed_output.get("Role", ""): break # 把除了role以外的信息传给下一个agent query_c.parsed_output.update({k:v for k,v in select_message.parsed_output.items() if k!="Role"}) for output_message in agent.astep(query_c, history, background=background, memory_manager=memory_manager): yield output_message or select_message # update self_memory self.append_history(query_c) self.append_history(output_message) output_message.input_query = output_message.role_content # output_message.parsed_output_list.append(output_message.parsed_output) # output_message = self.end_action_step(output_message) # update memory pool memory_manager.append(output_message) select_message.parsed_output = output_message.parsed_output select_message.spec_parsed_output.update(output_message.spec_parsed_output) select_message.parsed_output_list.extend(output_message.parsed_output_list) yield select_message def pre_print(self, query: Message, history: Memory = None, background: Memory = None, memory_manager: BaseMemoryManager=None): prompt = self.prompt_manager.pre_print( previous_agent_message=query, agent_long_term_memory=self.memory, ui_history=history, chain_summary_messages=background, react_memory=None, memory_pool=memory_manager.current_memory, agents=self.group_agents) title = f"<<<<{self.role.role_name}'s prompt>>>>" print("#"*len(title) + f"\n{title}\n"+ "#"*len(title)+ f"\n\n{prompt}\n\n") for agent in self.group_agents: agent.pre_print(query=query, history=history, background=background, memory_manager=memory_manager)