from langchain.callbacks import AsyncIteratorCallbackHandler from langchain.chat_models import ChatOpenAI from configs.model_config import (llm_model_dict, LLM_MODEL) def getChatModel(callBack: AsyncIteratorCallbackHandler = None, temperature=0.3, stop=None): if callBack is None: model = ChatOpenAI( streaming=True, verbose=True, openai_api_key=llm_model_dict[LLM_MODEL]["api_key"], openai_api_base=llm_model_dict[LLM_MODEL]["api_base_url"], model_name=LLM_MODEL, temperature=temperature, stop=stop ) else: model = ChatOpenAI( streaming=True, verbose=True, callBack=[callBack], openai_api_key=llm_model_dict[LLM_MODEL]["api_key"], openai_api_base=llm_model_dict[LLM_MODEL]["api_base_url"], model_name=LLM_MODEL, temperature=temperature, stop=stop ) return model import json, requests def getExtraModel(): return TestModel() class TestModel: def predict(self, request_body): headers = {"Content-Type":"application/json;charset=UTF-8", "codegpt_user":"", "codegpt_token":"" } xxx = requests.post( 'https://codegencore.alipay.com/api/chat/CODE_LLAMA_INT4/completion', data=json.dumps(request_body,ensure_ascii=False).encode('utf-8'), headers=headers) return xxx.json()["data"]