codefuse-chatbot/coagent/chat/knowledge_chat.py

90 lines
4.0 KiB
Python
Raw Normal View History

2023-09-28 10:58:58 +08:00
from fastapi import Request
import os, asyncio
from urllib.parse import urlencode
from typing import List
from langchain import LLMChain
from langchain.callbacks import AsyncIteratorCallbackHandler
from langchain.prompts.chat import ChatPromptTemplate
# from configs.model_config import (
# llm_model_dict, LLM_MODEL, PROMPT_TEMPLATE,
# VECTOR_SEARCH_TOP_K, SCORE_THRESHOLD)
from coagent.base_configs.env_config import KB_ROOT_PATH
from coagent.connector.configs.prompts import ORIGIN_TEMPLATE_PROMPT
from coagent.chat.utils import History, wrap_done
from coagent.utils import BaseResponse
from coagent.llm_models.llm_config import LLMConfig, EmbedConfig
2023-09-28 10:58:58 +08:00
from .base_chat import Chat
from coagent.service.kb_api import search_docs, KBServiceFactory
2023-09-28 10:58:58 +08:00
from loguru import logger
class KnowledgeChat(Chat):
def __init__(
self,
engine_name: str = "",
top_k: int = 5,
2023-09-28 10:58:58 +08:00
stream: bool = False,
score_thresold: float = 1.0,
2023-09-28 10:58:58 +08:00
local_doc_url: bool = False,
request: Request = None,
kb_root_path: str = KB_ROOT_PATH,
2023-09-28 10:58:58 +08:00
) -> None:
super().__init__(engine_name, top_k, stream)
self.score_thresold = score_thresold
self.local_doc_url = local_doc_url
self.request = request
self.kb_root_path = kb_root_path
2023-09-28 10:58:58 +08:00
def check_service_status(self) -> BaseResponse:
kb = KBServiceFactory.get_service_by_name(self.engine_name, self.kb_root_path)
2023-09-28 10:58:58 +08:00
if kb is None:
return BaseResponse(code=404, msg=f"未找到知识库 {self.engine_name}")
return BaseResponse(code=200, msg=f"找到知识库 {self.engine_name}")
def _process(self, query: str, history: List[History], model, llm_config: LLMConfig, embed_config: EmbedConfig, ):
2023-09-28 10:58:58 +08:00
'''process'''
docs = search_docs(
query, self.engine_name, self.top_k, self.score_threshold, self.kb_root_path,
api_key=embed_config.api_key, api_base_url=embed_config.api_base_url, embed_model=embed_config.embed_model,
embed_model_path=embed_config.embed_model_path, embed_engine=embed_config.embed_engine,
model_device=embed_config.model_device,
)
2023-09-28 10:58:58 +08:00
context = "\n".join([doc.page_content for doc in docs])
source_documents = []
for inum, doc in enumerate(docs):
filename = os.path.split(doc.metadata["source"])[-1]
if self.local_doc_url:
url = "file://" + doc.metadata["source"]
else:
parameters = urlencode({"knowledge_base_name": self.engine_name, "file_name":filename})
url = f"{self.request.base_url}knowledge_base/download_doc?" + parameters
text = f"""出处 [{inum + 1}] [{filename}]({url}) \n\n{doc.page_content}\n\n"""
source_documents.append(text)
chat_prompt = ChatPromptTemplate.from_messages(
[i.to_msg_tuple() for i in history] + [("human", ORIGIN_TEMPLATE_PROMPT)]
2023-09-28 10:58:58 +08:00
)
chain = LLMChain(prompt=chat_prompt, llm=model)
result = {"answer": "", "docs": source_documents}
return chain, context, result
def create_task(self, query: str, history: List[History], model, llm_config: LLMConfig, embed_config: EmbedConfig, ):
2023-09-28 10:58:58 +08:00
'''构建 llm 生成任务'''
logger.debug(f"query: {query}, history: {history}")
chain, context, result = self._process(query, history, model, llm_config, embed_config)
2023-09-28 10:58:58 +08:00
try:
content = chain({"context": context, "question": query})
except Exception as e:
content = {"text": str(e)}
return result, content
def create_atask(self, query, history, model, llm_config: LLMConfig, embed_config: EmbedConfig, callback: AsyncIteratorCallbackHandler):
chain, context, result = self._process(query, history, model, llm_config, embed_config)
2023-09-28 10:58:58 +08:00
task = asyncio.create_task(wrap_done(
chain.acall({"context": context, "question": query}), callback.done
))
return task, result