139 lines
6.0 KiB
Python
139 lines
6.0 KiB
Python
|
from pydantic import BaseModel
|
||
|
from typing import List, Union
|
||
|
import re
|
||
|
import traceback
|
||
|
import copy
|
||
|
from loguru import logger
|
||
|
|
||
|
from langchain.prompts.chat import ChatPromptTemplate
|
||
|
|
||
|
from dev_opsgpt.connector.connector_schema import Message
|
||
|
from dev_opsgpt.connector.shcema.memory import Memory
|
||
|
from dev_opsgpt.connector.connector_schema import Task, Env, Role, Message, ActionStatus
|
||
|
from dev_opsgpt.llm_models import getChatModel
|
||
|
from dev_opsgpt.connector.configs.agent_config import REACT_PROMPT_INPUT
|
||
|
|
||
|
from .base_agent import BaseAgent
|
||
|
|
||
|
|
||
|
class ReactAgent(BaseAgent):
|
||
|
def __init__(
|
||
|
self,
|
||
|
role: Role,
|
||
|
task: Task = None,
|
||
|
memory: Memory = None,
|
||
|
chat_turn: int = 1,
|
||
|
do_search: bool = False,
|
||
|
do_doc_retrieval: bool = False,
|
||
|
do_tool_retrieval: bool = False,
|
||
|
temperature: float = 0.2,
|
||
|
stop: Union[List[str], str] = "观察",
|
||
|
do_filter: bool = True,
|
||
|
do_use_self_memory: bool = True,
|
||
|
# docs_prompt: str,
|
||
|
# prompt_mamnger: PromptManager
|
||
|
):
|
||
|
super().__init__(role, task, memory, chat_turn, do_search, do_doc_retrieval,
|
||
|
do_tool_retrieval, temperature, stop, do_filter,do_use_self_memory
|
||
|
)
|
||
|
|
||
|
def run(self, query: Message, history: Memory = None, background: Memory = None) -> Message:
|
||
|
step_nums = copy.deepcopy(self.chat_turn)
|
||
|
react_memory = Memory([])
|
||
|
# 问题插入
|
||
|
output_message = Message(
|
||
|
role_name=self.role.role_name,
|
||
|
role_type="ai", #self.role.role_type,
|
||
|
role_content=query.input_query,
|
||
|
step_content=query.input_query,
|
||
|
input_query=query.input_query,
|
||
|
tools=query.tools
|
||
|
)
|
||
|
react_memory.append(output_message)
|
||
|
idx = 0
|
||
|
while step_nums > 0:
|
||
|
output_message.role_content = output_message.step_content
|
||
|
self_memory = self.memory if self.do_use_self_memory else None
|
||
|
prompt = self.create_prompt(query, self_memory, history, background, react_memory)
|
||
|
try:
|
||
|
content = self.llm.predict(prompt)
|
||
|
except Exception as e:
|
||
|
logger.warning(f"error prompt: {prompt}")
|
||
|
raise Exception(traceback.format_exc())
|
||
|
|
||
|
output_message.role_content = content
|
||
|
output_message.role_contents += [content]
|
||
|
output_message.step_content += output_message.role_content
|
||
|
output_message.step_contents + [output_message.role_content]
|
||
|
|
||
|
# logger.debug(f"{self.role.role_name}, {idx} iteration prompt: {prompt}")
|
||
|
# logger.info(f"{self.role.role_name}, {idx} iteration step_run: {output_message.role_content}")
|
||
|
|
||
|
output_message = self.parser(output_message)
|
||
|
# when get finished signal can stop early
|
||
|
if output_message.action_status == ActionStatus.FINISHED: break
|
||
|
# according the output to choose one action for code_content or tool_content
|
||
|
output_message = self.step_router(output_message)
|
||
|
logger.info(f"{self.role.role_name} react_run: {output_message.role_content}")
|
||
|
|
||
|
idx += 1
|
||
|
step_nums -= 1
|
||
|
# react' self_memory saved at last
|
||
|
self.append_history(output_message)
|
||
|
return output_message
|
||
|
|
||
|
def create_prompt(
|
||
|
self, query: Message, memory: Memory =None, history: Memory = None, background: Memory = None, react_memory: Memory = None, prompt_mamnger=None) -> str:
|
||
|
'''
|
||
|
role\task\tools\docs\memory
|
||
|
'''
|
||
|
#
|
||
|
doc_infos = self.create_doc_prompt(query)
|
||
|
code_infos = self.create_codedoc_prompt(query)
|
||
|
#
|
||
|
formatted_tools, tool_names = self.create_tools_prompt(query)
|
||
|
task_prompt = self.create_task_prompt(query)
|
||
|
background_prompt = self.create_background_prompt(background)
|
||
|
history_prompt = self.create_history_prompt(history)
|
||
|
selfmemory_prompt = self.create_selfmemory_prompt(memory, control_key="step_content")
|
||
|
#
|
||
|
# extra_system_prompt = self.role.role_prompt
|
||
|
prompt = self.role.role_prompt.format(**{"formatted_tools": formatted_tools, "tool_names": tool_names})
|
||
|
|
||
|
|
||
|
task = query.task or self.task
|
||
|
if task_prompt is not None:
|
||
|
prompt += "\n" + task.task_prompt
|
||
|
|
||
|
if doc_infos is not None and doc_infos!="" and doc_infos!="不存在知识库辅助信息":
|
||
|
prompt += f"\n知识库信息: {doc_infos}"
|
||
|
|
||
|
if code_infos is not None and code_infos!="" and code_infos!="不存在代码库辅助信息":
|
||
|
prompt += f"\n代码库信息: {code_infos}"
|
||
|
|
||
|
if background_prompt:
|
||
|
prompt += "\n" + background_prompt
|
||
|
|
||
|
if history_prompt:
|
||
|
prompt += "\n" + history_prompt
|
||
|
|
||
|
if selfmemory_prompt:
|
||
|
prompt += "\n" + selfmemory_prompt
|
||
|
|
||
|
# react 流程是自身迭代过程,另外二次触发的是需要作为历史对话信息
|
||
|
input_query = react_memory.to_tuple_messages(content_key="step_content")
|
||
|
input_query = "\n".join([f"{v}" for k, v in input_query if v])
|
||
|
|
||
|
# logger.debug(f"{self.role.role_name} extra_system_prompt: {self.role.role_prompt}")
|
||
|
# logger.debug(f"{self.role.role_name} input_query: {input_query}")
|
||
|
# logger.debug(f"{self.role.role_name} doc_infos: {doc_infos}")
|
||
|
# logger.debug(f"{self.role.role_name} tool_names: {tool_names}")
|
||
|
prompt += "\n" + REACT_PROMPT_INPUT.format(**{"query": input_query})
|
||
|
|
||
|
# prompt = extra_system_prompt.format(**{"query": input_query, "doc_infos": doc_infos, "formatted_tools": formatted_tools, "tool_names": tool_names})
|
||
|
while "{{" in prompt or "}}" in prompt:
|
||
|
prompt = prompt.replace("{{", "{")
|
||
|
prompt = prompt.replace("}}", "}")
|
||
|
return prompt
|
||
|
|