codefuse-chatbot/examples/webui/dialogue.py

515 lines
25 KiB
Python
Raw Normal View History

2023-09-28 10:58:58 +08:00
import streamlit as st
from streamlit_chatbox import *
from typing import List, Dict
from datetime import datetime
from random import randint
2023-09-28 10:58:58 +08:00
from .utils import *
from coagent.utils import *
from coagent.tools import TOOL_SETS
from coagent.chat.search_chat import SEARCH_ENGINES
from coagent.connector import PHASE_LIST, PHASE_CONFIGS
from coagent.service.service_factory import get_cb_details_by_cb_name
2023-09-28 10:58:58 +08:00
from configs.model_config import EMBEDDING_DEVICE, EMBEDDING_MODEL, embedding_model_dict, EMBEDDING_ENGINE, KB_ROOT_PATH, llm_model_dict
2023-09-28 10:58:58 +08:00
chat_box = ChatBox(
assistant_avatar="../sources/imgs/devops-chatbot2.png"
)
cur_dir = os.path.dirname(os.path.abspath(__file__))
2023-09-28 10:58:58 +08:00
GLOBAL_EXE_CODE_TEXT = ""
GLOBAL_MESSAGE = {"figures": {}, "final_contents": {}}
2023-09-28 10:58:58 +08:00
import yaml
# 加载YAML文件
webui_yaml_filename = "webui_zh.yaml" if True else "webui_en.yaml"
with open(os.path.join(cur_dir, f"yamls/{webui_yaml_filename}"), 'r', encoding="utf-8") as f:
try:
webui_configs = yaml.safe_load(f)
except yaml.YAMLError as exc:
print(exc)
def get_messages_history(history_len: int, isDetailed=False) -> List[Dict]:
2023-09-28 10:58:58 +08:00
def filter(msg):
'''
针对当前简单文本对话只返回每条消息的第一个element的内容
'''
content = [x._content for x in msg["elements"] if x._output_method in ["markdown", "text"]]
content = content[0] if content else ""
if isDetailed:
for k, v in GLOBAL_MESSAGE["final_contents"].items():
if k == content:
content = v[-1]
break
for k, v in GLOBAL_MESSAGE["figures"].items():
content = content.replace(v, k)
2023-09-28 10:58:58 +08:00
return {
"role": msg["role"],
"content": content,
2023-09-28 10:58:58 +08:00
}
history = chat_box.filter_history(100000, filter) # workaround before upgrading streamlit-chatbox.
user_count = 0
i = 1
for i in range(1, len(history) + 1):
if history[-i]["role"] == "user":
user_count += 1
if user_count >= history_len:
break
return history[-i:]
def upload2sandbox(upload_file, api: ApiRequest):
if upload_file is None:
res = {"msg": False}
else:
res = api.web_sd_upload(upload_file)
2023-09-28 10:58:58 +08:00
def dialogue_page(api: ApiRequest):
global GLOBAL_EXE_CODE_TEXT
chat_box.init_session()
with st.sidebar:
# TODO: 对话模型与会话绑定
def on_mode_change():
mode = st.session_state.dialogue_mode
text = webui_configs["dialogue"]["text_mode_swtich"] + f"{mode}"
if mode == webui_configs["dialogue"]["mode"][1]:
2023-09-28 10:58:58 +08:00
cur_kb = st.session_state.get("selected_kb")
if cur_kb:
text = text + webui_configs["dialogue"]["text_knowledgeBase_swtich"] + f'`{cur_kb}`'
2023-09-28 10:58:58 +08:00
st.toast(text)
dialogue_mode = st.selectbox(webui_configs["dialogue"]["mode_instruction"],
webui_configs["dialogue"]["mode"],
# ["LLM 对话",
# "知识库问答",
# "代码知识库问答",
# "搜索引擎问答",
# "Agent问答"
# ],
2023-09-28 10:58:58 +08:00
on_change=on_mode_change,
key="dialogue_mode",
)
history_len = st.number_input(webui_configs["dialogue"]["history_length"], 0, 10, 3)
2023-09-28 10:58:58 +08:00
def on_kb_change():
st.toast(f"{webui_configs['dialogue']['text_loaded_kbase']}: {st.session_state.selected_kb}")
2023-09-28 10:58:58 +08:00
def on_cb_change():
st.toast(f"{webui_configs['dialogue']['text_loaded_cbase']}: {st.session_state.selected_cb}")
cb_details = get_cb_details_by_cb_name(st.session_state.selected_cb)
st.session_state['do_interpret'] = cb_details['do_interpret']
#
if "interpreter_file_key" not in st.session_state:
st.session_state["interpreter_file_key"] = 0
not_agent_qa = True
interpreter_file = ""
is_detailed = False
if dialogue_mode == webui_configs["dialogue"]["mode"][1]:
with st.expander(webui_configs["dialogue"]["kbase_expander_name"], True):
2023-09-28 10:58:58 +08:00
kb_list = api.list_knowledge_bases(no_remote_api=True)
selected_kb = st.selectbox(
webui_configs["dialogue"]["kbase_selectbox_name"],
2023-09-28 10:58:58 +08:00
kb_list,
on_change=on_kb_change,
key="selected_kb",
)
kb_top_k = st.number_input(
webui_configs["dialogue"]["kbase_ninput_topk_name"], 1, 20, 3)
score_threshold = st.number_input(
webui_configs["dialogue"]["kbase_ninput_score_threshold_name"],
0.0, float(SCORE_THRESHOLD), float(SCORE_THRESHOLD),
float(SCORE_THRESHOLD//100))
elif dialogue_mode == webui_configs["dialogue"]["mode"][2]:
with st.expander(webui_configs["dialogue"]["cbase_expander_name"], True):
cb_list = api.list_cb(no_remote_api=True)
logger.debug('codebase_list={}'.format(cb_list))
selected_cb = st.selectbox(
webui_configs["dialogue"]["cbase_selectbox_name"],
cb_list,
on_change=on_cb_change,
key="selected_cb",
)
# change do_interpret
st.toast(f"{webui_configs['dialogue']['text_loaded_cbase']}: {st.session_state.selected_cb}")
cb_details = get_cb_details_by_cb_name(st.session_state.selected_cb)
st.session_state['do_interpret'] = cb_details['do_interpret']
cb_code_limit = st.number_input(
webui_configs["dialogue"]["cbase_ninput_topk_name"], 1, 20, 1)
search_type_list = webui_configs["dialogue"]["cbase_search_type_v1"] if st.session_state['do_interpret'] == 'YES' \
else webui_configs["dialogue"]["cbase_search_type_v2"]
cb_search_type = st.selectbox(
webui_configs["dialogue"]["cbase_selectbox_type_name"],
search_type_list,
key='cb_search_type'
)
elif dialogue_mode == webui_configs["dialogue"]["mode"][3]:
with st.expander(webui_configs["dialogue"]["expander_search_name"], True):
search_engine = st.selectbox(
webui_configs["dialogue"]["selectbox_search_name"],
SEARCH_ENGINES.keys(), 0)
se_top_k = st.number_input(
webui_configs["dialogue"]["ninput_search_topk_name"], 1, 20, 3)
elif dialogue_mode == webui_configs["dialogue"]["mode"][4]:
not_agent_qa = False
with st.expander(webui_configs["dialogue"]["phase_expander_name"], True):
choose_phase = st.selectbox(
webui_configs["dialogue"]["phase_selectbox_name"], PHASE_LIST, 0)
2023-09-28 10:58:58 +08:00
is_detailed = st.toggle(webui_configs["dialogue"]["phase_toggle_detailed_name"], False)
tool_using_on = st.toggle(
webui_configs["dialogue"]["phase_toggle_doToolUsing"],
PHASE_CONFIGS[choose_phase].get("do_using_tool", False))
tool_selects = []
if tool_using_on:
with st.expander("工具军火库", True):
tool_selects = st.multiselect(
webui_configs["dialogue"]["phase_multiselect_tools"],
TOOL_SETS, ["WeatherInfo"])
search_on = st.toggle(webui_configs["dialogue"]["phase_toggle_doSearch"],
PHASE_CONFIGS[choose_phase].get("do_search", False))
search_engine, top_k = None, 3
if search_on:
with st.expander(webui_configs["dialogue"]["expander_search_name"], True):
search_engine = st.selectbox(
webui_configs["dialogue"]["selectbox_search_name"],
SEARCH_ENGINES.keys(), 0)
se_top_k = st.number_input(
webui_configs["dialogue"]["ninput_search_topk_name"], 1, 20, 3)
doc_retrieval_on = st.toggle(
webui_configs["dialogue"]["phase_toggle_doDocRetrieval"],
PHASE_CONFIGS[choose_phase].get("do_doc_retrieval", False)
)
selected_kb, top_k, score_threshold = None, 3, 1.0
if doc_retrieval_on:
with st.expander(webui_configs["dialogue"]["kbase_expander_name"], True):
kb_list = api.list_knowledge_bases(no_remote_api=True)
selected_kb = st.selectbox(
webui_configs["dialogue"]["kbase_selectbox_name"],
kb_list,
on_change=on_kb_change,
key="selected_kb",
)
top_k = st.number_input(
webui_configs["dialogue"]["kbase_ninput_topk_name"], 1, 20, 3)
score_threshold = st.number_input(
webui_configs["dialogue"]["kbase_ninput_score_threshold_name"],
0.0, float(SCORE_THRESHOLD), float(SCORE_THRESHOLD),
float(SCORE_THRESHOLD//100))
code_retrieval_on = st.toggle(
webui_configs["dialogue"]["phase_toggle_doCodeRetrieval"],
PHASE_CONFIGS[choose_phase].get("do_code_retrieval", False))
selected_cb, top_k = None, 1
cb_search_type = "tag"
if code_retrieval_on:
with st.expander(webui_configs["dialogue"]["cbase_expander_name"], True):
cb_list = api.list_cb(no_remote_api=True)
logger.debug('codebase_list={}'.format(cb_list))
selected_cb = st.selectbox(
webui_configs["dialogue"]["cbase_selectbox_name"],
cb_list,
on_change=on_cb_change,
key="selected_cb",
)
# change do_interpret
st.toast(f"{webui_configs['dialogue']['text_loaded_cbase']}: {st.session_state.selected_cb}")
cb_details = get_cb_details_by_cb_name(st.session_state.selected_cb)
st.session_state['do_interpret'] = cb_details['do_interpret']
top_k = st.number_input(
webui_configs["dialogue"]["cbase_ninput_topk_name"], 1, 20, 1)
search_type_list = webui_configs["dialogue"]["cbase_search_type_v1"] if st.session_state['do_interpret'] == 'YES' \
else webui_configs["dialogue"]["cbase_search_type_v2"]
cb_search_type = st.selectbox(
webui_configs["dialogue"]["cbase_selectbox_type_name"],
search_type_list,
key='cb_search_type'
)
with st.expander(webui_configs["sandbox"]["expander_name"], False):
interpreter_file = st.file_uploader(
webui_configs["sandbox"]["file_upload_name"],
[i for ls in LOADER2EXT_DICT.values() for i in ls] + ["jpg", "png"],
accept_multiple_files=False,
key=st.session_state.interpreter_file_key,
)
files = api.web_sd_list_files()
files = files["data"]
download_file = st.selectbox(webui_configs["sandbox"]["selectbox_name"], files,
key="download_file",)
cols = st.columns(3)
file_url, file_name = api.web_sd_download(download_file)
if cols[0].button(webui_configs["sandbox"]["button_upload_name"],):
upload2sandbox(interpreter_file, api)
st.session_state["interpreter_file_key"] += 1
interpreter_file = ""
st.experimental_rerun()
cols[1].download_button(webui_configs["sandbox"]["button_download_name"],
file_url, file_name)
if cols[2].button(webui_configs["sandbox"]["button_delete_name"],):
api.web_sd_delete(download_file)
# code_interpreter_on = st.toggle(
# webui_configs["sandbox"]["toggle_doCodeInterpreter"]) and not_agent_qa
# code_exec_on = st.toggle(webui_configs["sandbox"]["toggle_doAutoCodeExec"]) and not_agent_qa
2023-09-28 10:58:58 +08:00
# Display chat messages from history on app rerun
chat_box.output_messages()
chat_input_placeholder = webui_configs["chat"]["chat_placeholder"]
2023-09-28 10:58:58 +08:00
code_text = "" or GLOBAL_EXE_CODE_TEXT
codebox_res = None
if prompt := st.chat_input(chat_input_placeholder, key="prompt"):
upload2sandbox(interpreter_file, api)
logger.debug(f"prompt: {prompt}")
history = get_messages_history(history_len, is_detailed)
2023-09-28 10:58:58 +08:00
chat_box.user_say(prompt)
if dialogue_mode == webui_configs["dialogue"]["mode"][0]:
chat_box.ai_say(webui_configs["chat"]["chatbox_saying"])
2023-09-28 10:58:58 +08:00
text = ""
r = api.chat_chat(
prompt, history, no_remote_api=True,
embed_model=EMBEDDING_MODEL, embed_model_path=embedding_model_dict[EMBEDDING_MODEL],
model_device=EMBEDDING_DEVICE, embed_engine=EMBEDDING_ENGINE,api_key=llm_model_dict[LLM_MODEL]["api_key"],
api_base_url=llm_model_dict[LLM_MODEL]["api_base_url"],
llm_model=LLM_MODEL)
2023-09-28 10:58:58 +08:00
for t in r:
if error_msg := check_error_msg(t): # check whether error occured
2023-09-28 10:58:58 +08:00
st.error(error_msg)
break
text += t["answer"]
2023-11-15 17:17:50 +08:00
2023-11-15 17:21:07 +08:00
# text = replace_lt_gt(text)
2023-11-15 17:17:50 +08:00
2023-09-28 10:58:58 +08:00
chat_box.update_msg(text)
2023-11-15 17:21:07 +08:00
# logger.debug(f"text: {text}")
2023-11-15 17:17:50 +08:00
2023-11-15 17:21:07 +08:00
# text = replace_lt_gt(text)
2023-11-15 17:17:50 +08:00
2023-09-28 10:58:58 +08:00
chat_box.update_msg(text, streaming=False) # 更新最终的字符串,去除光标
# 判断是否存在代码, 并提高编辑功能,执行功能
# code_text = api.codebox.decode_code_from_text(text)
# GLOBAL_EXE_CODE_TEXT = code_text
# if code_text and code_exec_on:
# codebox_res = api.codebox_chat("```"+code_text+"```", do_code_exe=True)
elif dialogue_mode == webui_configs["dialogue"]["mode"][4]:
display_infos = [webui_configs["chat"]["chatbox_saying"]]
if search_on:
display_infos.append(Markdown("...", in_expander=True,
title=webui_configs["chat"]["chatbox_search_result"]))
if doc_retrieval_on:
display_infos.append(Markdown("...", in_expander=True,
title=webui_configs["chat"]["chatbox_doc_result"]))
if code_retrieval_on:
display_infos.append(Markdown("...", in_expander=True,
title=webui_configs["chat"]["chatbox_code_result"]))
chat_box.ai_say(display_infos)
2023-09-28 10:58:58 +08:00
if 'history_node_list' in st.session_state:
history_node_list: List[str] = st.session_state['history_node_list']
else:
history_node_list: List[str] = []
input_kargs = {"query": prompt,
"phase_name": choose_phase,
"history": history,
"doc_engine_name": selected_kb,
"search_engine_name": search_engine,
"code_engine_name": selected_cb,
"cb_search_type": cb_search_type,
"top_k": top_k,
"score_threshold": score_threshold,
"do_search": search_on,
"do_doc_retrieval": doc_retrieval_on,
"do_code_retrieval": code_retrieval_on,
"do_tool_retrieval": False,
"custom_phase_configs": {},
"custom_chain_configs": {},
"custom_role_configs": {},
"choose_tools": tool_selects,
"history_node_list": history_node_list,
"isDetailed": is_detailed,
"upload_file": interpreter_file,
"embed_model": EMBEDDING_MODEL,
"model_device": EMBEDDING_DEVICE,
"embed_model_path": embedding_model_dict[EMBEDDING_MODEL],
"embed_engine": EMBEDDING_ENGINE,
"kb_root_path": KB_ROOT_PATH,
"model_name": LLM_MODEL,
"api_key": llm_model_dict[LLM_MODEL]["api_key"],
"api_base_url": llm_model_dict[LLM_MODEL]["api_base_url"],
}
text = ""
d = {"docs": []}
for idx_count, d in enumerate(api.agent_achat(**input_kargs)):
if error_msg := check_error_msg(d): # check whether error occured
st.error(error_msg)
logger.debug(f"d: {d['answer']}")
text = d["answer"]
for text_length in range(0, len(text)+1, 10):
chat_box.update_msg(text[:text_length+10], element_index=0, streaming=True)
GLOBAL_MESSAGE.setdefault("final_contents", {}).setdefault(d.get("answer", ""), []).append(d.get("final_content", ""))
for k, v in d["figures"].items():
if k in text:
img_html = "\n<img src='data:image/png;base64,{}' class='img-fluid'>\n".format(v)
text = text.replace(k, img_html).replace(".png", "")
GLOBAL_MESSAGE.setdefault("figures", {}).setdefault(k, v)
chat_box.update_msg(text, element_index=0, streaming=False, state="complete") # 更新最终的字符串,去除光标
if search_on:
chat_box.update_msg(f"{webui_configs['chat']['chatbox_search_result']}:\n\n" + "\n\n".join(d["search_docs"]), element_index=search_on, streaming=False, state="complete")
if doc_retrieval_on:
chat_box.update_msg(f"{webui_configs['chat']['chatbox_doc_result']}:\n\n" + "\n\n".join(d["db_docs"]), element_index=search_on+doc_retrieval_on, streaming=False, state="complete")
if code_retrieval_on:
chat_box.update_msg(f"{webui_configs['chat']['chatbox_code_result']}:\n\n" + "\n\n".join(d["code_docs"]),
element_index=search_on+doc_retrieval_on+code_retrieval_on, streaming=False, state="complete")
history_node_list.extend([node[0] for node in d.get("related_nodes", [])])
history_node_list = list(set(history_node_list))
st.session_state['history_node_list'] = history_node_list
elif dialogue_mode == webui_configs["dialogue"]["mode"][1]:
2023-09-28 10:58:58 +08:00
history = get_messages_history(history_len)
chat_box.ai_say([
f"{webui_configs['chat']['chatbox_doc_querying']} `{selected_kb}` ...",
Markdown("...", in_expander=True, title=webui_configs['chat']['chatbox_doc_result']),
2023-09-28 10:58:58 +08:00
])
text = ""
d = {"docs": []}
for idx_count, d in enumerate(
api.knowledge_base_chat(
prompt, selected_kb, kb_top_k, score_threshold, history,
embed_model=EMBEDDING_MODEL, embed_model_path=embedding_model_dict[EMBEDDING_MODEL],
model_device=EMBEDDING_DEVICE, embed_engine=EMBEDDING_ENGINE, llm_model=LLM_MODEL,
api_key=llm_model_dict[LLM_MODEL]["api_key"],
api_base_url=llm_model_dict[LLM_MODEL]["api_base_url"],
)
):
2023-09-28 10:58:58 +08:00
if error_msg := check_error_msg(d): # check whether error occured
st.error(error_msg)
text += d["answer"]
if idx_count%10 == 0:
chat_box.update_msg(text, element_index=0)
# chat_box.update_msg("知识库匹配结果: \n\n".join(d["docs"]), element_index=1, streaming=False, state="complete")
chat_box.update_msg(text, element_index=0, streaming=False) # 更新最终的字符串,去除光标
chat_box.update_msg("{webui_configs['chat']['chatbox_doc_result']}: \n\n".join(d["docs"]), element_index=1, streaming=False, state="complete")
elif dialogue_mode == webui_configs["dialogue"]["mode"][2]:
logger.info('prompt={}'.format(prompt))
logger.info('history={}'.format(history))
if 'history_node_list' in st.session_state:
api.codeChat.history_node_list = st.session_state['history_node_list']
chat_box.ai_say([
f"{webui_configs['chat']['chatbox_code_querying']} `{selected_cb}` ...",
Markdown("...", in_expander=True, title=webui_configs['chat']['chatbox_code_result']),
])
text = ""
d = {"codes": []}
for idx_count, d in enumerate(api.code_base_chat(query=prompt, code_base_name=selected_cb,
code_limit=cb_code_limit, history=history,
cb_search_type=cb_search_type,
no_remote_api=True, embed_model=EMBEDDING_MODEL,
embed_model_path=embedding_model_dict[EMBEDDING_MODEL],
embed_engine=EMBEDDING_ENGINE, llm_model=LLM_MODEL,
api_key=llm_model_dict[LLM_MODEL]["api_key"],
api_base_url=llm_model_dict[LLM_MODEL]["api_base_url"],
)):
if error_msg := check_error_msg(d):
st.error(error_msg)
text += d["answer"]
if idx_count % 10 == 0:
2023-11-15 17:21:07 +08:00
# text = replace_lt_gt(text)
chat_box.update_msg(text, element_index=0)
2023-11-15 17:17:50 +08:00
# postprocess
logger.debug(f"d={d}")
text = replace_lt_gt(text)
chat_box.update_msg(text, element_index=0, streaming=False) # 更新最终的字符串,去除光标
2023-11-15 17:17:50 +08:00
logger.debug('text={}'.format(text))
chat_box.update_msg("\n".join(d["codes"]), element_index=1, streaming=False, state="complete")
# session state update
# st.session_state['history_node_list'] = api.codeChat.history_node_list
elif dialogue_mode == webui_configs["dialogue"]["mode"][3]:
2023-09-28 10:58:58 +08:00
chat_box.ai_say([
webui_configs['chat']['chatbox_searching'],
Markdown("...", in_expander=True, title=webui_configs['chat']['chatbox_search_result']),
2023-09-28 10:58:58 +08:00
])
text = ""
d = {"docs": []}
for idx_count, d in enumerate(
api.search_engine_chat(
prompt, search_engine, se_top_k, history, embed_model=EMBEDDING_MODEL,
embed_model_path=embedding_model_dict[EMBEDDING_MODEL],
model_device=EMBEDDING_DEVICE, embed_engine=EMBEDDING_ENGINE, llm_model=LLM_MODEL,
pi_key=llm_model_dict[LLM_MODEL]["api_key"],
api_base_url=llm_model_dict[LLM_MODEL]["api_base_url"],)
):
2023-09-28 10:58:58 +08:00
if error_msg := check_error_msg(d): # check whether error occured
st.error(error_msg)
text += d["answer"]
if idx_count%10 == 0:
chat_box.update_msg(text, element_index=0)
# chat_box.update_msg("搜索匹配结果: \n\n".join(d["docs"]), element_index=1, streaming=False)
chat_box.update_msg(text, element_index=0, streaming=False) # 更新最终的字符串,去除光标
chat_box.update_msg(f"{webui_configs['chat']['chatbox_search_result']}: \n\n".join(d["docs"]), element_index=1, streaming=False, state="complete")
2023-09-28 10:58:58 +08:00
# 将上传文件清空
st.session_state["interpreter_file_key"] += 1
st.experimental_rerun()
2023-09-28 10:58:58 +08:00
now = datetime.now()
with st.sidebar:
cols = st.columns(2)
export_btn = cols[0]
if cols[1].button(
webui_configs['export']['button_clear_conversation_name'],
2023-09-28 10:58:58 +08:00
use_container_width=True,
):
chat_box.reset_history()
GLOBAL_EXE_CODE_TEXT = ""
2023-11-15 17:17:50 +08:00
if 'history_node_list' in st.session_state:
st.session_state['history_node_list'] = []
2023-09-28 10:58:58 +08:00
st.experimental_rerun()
export_btn.download_button(
webui_configs['export']['download_button_export_name'],
2023-09-28 10:58:58 +08:00
"".join(chat_box.export2md()),
file_name=f"{now:%Y-%m-%d %H.%M}_conversations.md",
2023-09-28 10:58:58 +08:00
mime="text/markdown",
use_container_width=True,
)