2023-12-07 20:17:21 +08:00
|
|
|
from pydantic import BaseModel
|
|
|
|
from typing import List, Union
|
|
|
|
import re
|
|
|
|
import json
|
|
|
|
import traceback
|
|
|
|
import copy
|
2023-12-26 11:41:53 +08:00
|
|
|
import random
|
2023-12-07 20:17:21 +08:00
|
|
|
from loguru import logger
|
|
|
|
|
|
|
|
from langchain.prompts.chat import ChatPromptTemplate
|
|
|
|
|
|
|
|
from dev_opsgpt.connector.schema import (
|
|
|
|
Memory, Task, Env, Role, Message, ActionStatus
|
|
|
|
)
|
|
|
|
from dev_opsgpt.llm_models import getChatModel
|
2023-12-26 11:41:53 +08:00
|
|
|
from dev_opsgpt.connector.configs.prompts import BASE_PROMPT_INPUT, QUERY_CONTEXT_DOC_PROMPT_INPUT, BEGIN_PROMPT_INPUT
|
|
|
|
from dev_opsgpt.connector.utils import parse_section
|
2023-12-07 20:17:21 +08:00
|
|
|
|
|
|
|
from .base_agent import BaseAgent
|
|
|
|
|
|
|
|
|
|
|
|
class SelectorAgent(BaseAgent):
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
role: Role,
|
|
|
|
task: Task = None,
|
|
|
|
memory: Memory = None,
|
|
|
|
chat_turn: int = 1,
|
|
|
|
do_search: bool = False,
|
|
|
|
do_doc_retrieval: bool = False,
|
|
|
|
do_tool_retrieval: bool = False,
|
|
|
|
temperature: float = 0.2,
|
|
|
|
stop: Union[List[str], str] = None,
|
|
|
|
do_filter: bool = True,
|
|
|
|
do_use_self_memory: bool = True,
|
|
|
|
focus_agents: List[str] = [],
|
|
|
|
focus_message_keys: List[str] = [],
|
2023-12-26 11:41:53 +08:00
|
|
|
group_agents: List[BaseAgent] = [],
|
2023-12-07 20:17:21 +08:00
|
|
|
# prompt_mamnger: PromptManager
|
|
|
|
):
|
|
|
|
|
|
|
|
super().__init__(role, task, memory, chat_turn, do_search, do_doc_retrieval,
|
|
|
|
do_tool_retrieval, temperature, stop, do_filter,do_use_self_memory,
|
|
|
|
focus_agents, focus_message_keys
|
|
|
|
)
|
2023-12-26 11:41:53 +08:00
|
|
|
self.group_agents = group_agents
|
|
|
|
|
|
|
|
def arun(self, query: Message, history: Memory = None, background: Memory = None, memory_pool: Memory=None) -> Message:
|
|
|
|
'''agent reponse from multi-message'''
|
|
|
|
# insert query into memory
|
|
|
|
query_c = copy.deepcopy(query)
|
|
|
|
query = self.start_action_step(query)
|
|
|
|
self_memory = self.memory if self.do_use_self_memory else None
|
|
|
|
# create your llm prompt
|
|
|
|
prompt = self.create_prompt(query_c, self_memory, history, background, memory_pool=memory_pool)
|
|
|
|
content = self.llm.predict(prompt)
|
|
|
|
logger.debug(f"{self.role.role_name} prompt: {prompt}")
|
|
|
|
logger.debug(f"{self.role.role_name} content: {content}")
|
|
|
|
|
|
|
|
# select agent
|
|
|
|
select_message = Message(
|
|
|
|
role_name=self.role.role_name,
|
|
|
|
role_type="ai", #self.role.role_type,
|
|
|
|
role_content=content,
|
|
|
|
step_content=content,
|
|
|
|
input_query=query_c.input_query,
|
|
|
|
tools=query_c.tools,
|
|
|
|
parsed_output_list=[query.parsed_output]
|
|
|
|
)
|
|
|
|
# common parse llm' content to message
|
|
|
|
select_message = self.message_utils.parser(select_message)
|
|
|
|
if self.do_filter:
|
|
|
|
select_message = self.message_utils.filter(select_message)
|
|
|
|
|
|
|
|
output_message = None
|
|
|
|
if select_message.parsed_output.get("Role", "") in [agent.role.role_name for agent in self.group_agents]:
|
|
|
|
for agent in self.group_agents:
|
|
|
|
if agent.role.role_name == select_message.parsed_output.get("Role", ""):
|
|
|
|
break
|
|
|
|
for output_message in agent.arun(query, history, background=background, memory_pool=memory_pool):
|
|
|
|
pass
|
|
|
|
# update self_memory
|
|
|
|
self.append_history(query_c)
|
|
|
|
self.append_history(output_message)
|
|
|
|
logger.info(f"{agent.role.role_name} currenct question: {output_message.input_query}\nllm_step_run: {output_message.role_content}")
|
|
|
|
output_message.input_query = output_message.role_content
|
|
|
|
output_message.parsed_output_list.append(output_message.parsed_output)
|
|
|
|
#
|
|
|
|
output_message = self.end_action_step(output_message)
|
|
|
|
# update memory pool
|
|
|
|
memory_pool.append(output_message)
|
|
|
|
yield output_message or select_message
|
2023-12-07 20:17:21 +08:00
|
|
|
|
|
|
|
def create_prompt(
|
|
|
|
self, query: Message, memory: Memory =None, history: Memory = None, background: Memory = None, memory_pool: Memory=None, prompt_mamnger=None) -> str:
|
|
|
|
'''
|
|
|
|
role\task\tools\docs\memory
|
|
|
|
'''
|
|
|
|
#
|
|
|
|
doc_infos = self.create_doc_prompt(query)
|
|
|
|
code_infos = self.create_codedoc_prompt(query)
|
|
|
|
#
|
2023-12-26 11:41:53 +08:00
|
|
|
formatted_tools, tool_names, tools_descs = self.create_tools_prompt(query)
|
|
|
|
agent_names, agents = self.create_agent_names()
|
2023-12-07 20:17:21 +08:00
|
|
|
task_prompt = self.create_task_prompt(query)
|
|
|
|
background_prompt = self.create_background_prompt(background)
|
|
|
|
history_prompt = self.create_history_prompt(history)
|
|
|
|
selfmemory_prompt = self.create_selfmemory_prompt(memory, control_key="step_content")
|
|
|
|
|
|
|
|
|
2023-12-26 11:41:53 +08:00
|
|
|
DocInfos = ""
|
|
|
|
if doc_infos is not None and doc_infos!="" and doc_infos!="不存在知识库辅助信息":
|
|
|
|
DocInfos += f"\nDocument Information: {doc_infos}"
|
2023-12-07 20:17:21 +08:00
|
|
|
|
2023-12-26 11:41:53 +08:00
|
|
|
if code_infos is not None and code_infos!="" and code_infos!="不存在代码库辅助信息":
|
|
|
|
DocInfos += f"\nCodeBase Infomation: {code_infos}"
|
2023-12-07 20:17:21 +08:00
|
|
|
|
2023-12-26 11:41:53 +08:00
|
|
|
input_query = query.input_query
|
|
|
|
logger.debug(f"{self.role.role_name} input_query: {input_query}")
|
|
|
|
prompt = self.role.role_prompt.format(**{"agent_names": agent_names, "agents": agents, "formatted_tools": tools_descs, "tool_names": tool_names})
|
|
|
|
#
|
|
|
|
memory_pool_select_by_agent_key = self.select_memory_by_agent_key(memory_pool)
|
|
|
|
memory_pool_select_by_agent_key_context = '\n\n'.join([f"*{k}*\n{v}" for parsed_output in memory_pool_select_by_agent_key.get_parserd_output_list() for k, v in parsed_output.items() if k not in ['Action Status']])
|
2023-12-07 20:17:21 +08:00
|
|
|
|
2023-12-26 11:41:53 +08:00
|
|
|
input_keys = parse_section(self.role.role_prompt, 'Input Format')
|
|
|
|
#
|
|
|
|
prompt += "\n" + BEGIN_PROMPT_INPUT
|
|
|
|
for input_key in input_keys:
|
|
|
|
if input_key == "Origin Query":
|
|
|
|
prompt += "\n**Origin Query:**\n" + query.origin_query
|
|
|
|
elif input_key == "Context":
|
|
|
|
context = "\n".join([f"*{k}*\n{v}" for i in query.parsed_output_list for k,v in i.items() if "Action Status" !=k])
|
|
|
|
if history:
|
|
|
|
context = history_prompt + "\n" + context
|
|
|
|
if not context:
|
|
|
|
context = "there is no context"
|
|
|
|
|
|
|
|
if self.focus_agents and memory_pool_select_by_agent_key_context:
|
|
|
|
context = memory_pool_select_by_agent_key_context
|
|
|
|
prompt += "\n**Context:**\n" + context + "\n" + input_query
|
|
|
|
elif input_key == "DocInfos":
|
|
|
|
prompt += "\n**DocInfos:**\n" + DocInfos
|
|
|
|
elif input_key == "Question":
|
|
|
|
prompt += "\n**Question:**\n" + input_query
|
2023-12-07 20:17:21 +08:00
|
|
|
|
|
|
|
while "{{" in prompt or "}}" in prompt:
|
|
|
|
prompt = prompt.replace("{{", "{")
|
|
|
|
prompt = prompt.replace("}}", "}")
|
|
|
|
|
|
|
|
# logger.debug(f"{self.role.role_name} prompt: {prompt}")
|
|
|
|
return prompt
|
|
|
|
|
2023-12-26 11:41:53 +08:00
|
|
|
def create_agent_names(self):
|
|
|
|
random.shuffle(self.group_agents)
|
|
|
|
agent_names = ", ".join([f'{agent.role.role_name}' for agent in self.group_agents])
|
|
|
|
agent_descs = []
|
|
|
|
for agent in self.group_agents:
|
|
|
|
role_desc = agent.role.role_prompt.split("####")[1]
|
|
|
|
while "\n\n" in role_desc:
|
|
|
|
role_desc = role_desc.replace("\n\n", "\n")
|
|
|
|
role_desc = role_desc.replace("\n", ",")
|
|
|
|
|
|
|
|
agent_descs.append(f'"role name: {agent.role.role_name}\nrole description: {role_desc}"')
|
|
|
|
|
|
|
|
return agent_names, "\n".join(agent_descs)
|