2023-12-26 11:41:53 +08:00
|
|
|
|
from fastchat.conversation import Conversation
|
2024-01-26 14:03:25 +08:00
|
|
|
|
import os
|
2023-12-26 11:41:53 +08:00
|
|
|
|
from .base import *
|
|
|
|
|
from fastchat import conversation as conv
|
|
|
|
|
import sys
|
|
|
|
|
from typing import List, Dict, Iterator, Literal
|
2024-01-26 14:03:25 +08:00
|
|
|
|
from loguru import logger
|
|
|
|
|
# from configs import logger, log_verbose
|
|
|
|
|
log_verbose = os.environ.get("log_verbose", False)
|
2023-12-26 11:41:53 +08:00
|
|
|
|
|
|
|
|
|
class ChatGLMWorker(ApiModelWorker):
|
|
|
|
|
DEFAULT_EMBED_MODEL = "text_embedding"
|
|
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
|
self,
|
|
|
|
|
*,
|
|
|
|
|
model_names: List[str] = ["zhipu-api"],
|
|
|
|
|
controller_addr: str = None,
|
|
|
|
|
worker_addr: str = None,
|
|
|
|
|
version: Literal["chatglm_turbo"] = "chatglm_turbo",
|
|
|
|
|
**kwargs,
|
|
|
|
|
):
|
|
|
|
|
kwargs.update(model_names=model_names, controller_addr=controller_addr, worker_addr=worker_addr)
|
|
|
|
|
kwargs.setdefault("context_len", 32768)
|
|
|
|
|
super().__init__(**kwargs)
|
|
|
|
|
self.version = version
|
|
|
|
|
|
|
|
|
|
def do_chat(self, params: ApiChatParams) -> Iterator[Dict]:
|
|
|
|
|
# TODO: 维护request_id
|
|
|
|
|
import zhipuai
|
|
|
|
|
|
|
|
|
|
params.load_config(self.model_names[0])
|
|
|
|
|
zhipuai.api_key = params.api_key
|
|
|
|
|
|
|
|
|
|
if log_verbose:
|
|
|
|
|
logger.info(f'{self.__class__.__name__}:params: {params}')
|
|
|
|
|
|
|
|
|
|
response = zhipuai.model_api.sse_invoke(
|
|
|
|
|
model=params.version,
|
|
|
|
|
prompt=params.messages,
|
|
|
|
|
temperature=params.temperature,
|
|
|
|
|
top_p=params.top_p,
|
|
|
|
|
incremental=False,
|
|
|
|
|
)
|
|
|
|
|
for e in response.events():
|
|
|
|
|
if e.event == "add":
|
|
|
|
|
yield {"error_code": 0, "text": e.data}
|
|
|
|
|
elif e.event in ["error", "interrupted"]:
|
|
|
|
|
data = {
|
|
|
|
|
"error_code": 500,
|
|
|
|
|
"text": str(e),
|
|
|
|
|
"error": {
|
|
|
|
|
"message": str(e),
|
|
|
|
|
"type": "invalid_request_error",
|
|
|
|
|
"param": None,
|
|
|
|
|
"code": None,
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
self.logger.error(f"请求智谱 API 时发生错误:{data}")
|
|
|
|
|
yield data
|
|
|
|
|
|
|
|
|
|
def do_embeddings(self, params: ApiEmbeddingsParams) -> Dict:
|
|
|
|
|
import zhipuai
|
|
|
|
|
|
|
|
|
|
params.load_config(self.model_names[0])
|
|
|
|
|
zhipuai.api_key = params.api_key
|
|
|
|
|
|
|
|
|
|
embeddings = []
|
|
|
|
|
try:
|
|
|
|
|
for t in params.texts:
|
|
|
|
|
response = zhipuai.model_api.invoke(model=params.embed_model or self.DEFAULT_EMBED_MODEL, prompt=t)
|
|
|
|
|
if response["code"] == 200:
|
|
|
|
|
embeddings.append(response["data"]["embedding"])
|
|
|
|
|
else:
|
|
|
|
|
self.logger.error(f"请求智谱 API 时发生错误:{response}")
|
|
|
|
|
return response # dict with code & msg
|
|
|
|
|
except Exception as e:
|
|
|
|
|
self.logger.error(f"请求智谱 API 时发生错误:{data}")
|
|
|
|
|
data = {"code": 500, "msg": f"对文本向量化时出错:{e}"}
|
|
|
|
|
return data
|
|
|
|
|
|
|
|
|
|
return {"code": 200, "data": embeddings}
|
|
|
|
|
|
|
|
|
|
def get_embeddings(self, params):
|
|
|
|
|
# TODO: 支持embeddings
|
|
|
|
|
print("embedding")
|
|
|
|
|
# print(params)
|
|
|
|
|
|
|
|
|
|
def make_conv_template(self, conv_template: str = None, model_path: str = None) -> Conversation:
|
|
|
|
|
# 这里的是chatglm api的模板,其它API的conv_template需要定制
|
|
|
|
|
return conv.Conversation(
|
|
|
|
|
name=self.model_names[0],
|
|
|
|
|
system_message="你是一个聪明的助手,请根据用户的提示来完成任务",
|
|
|
|
|
messages=[],
|
|
|
|
|
roles=["Human", "Assistant", "System"],
|
|
|
|
|
sep="\n###",
|
|
|
|
|
stop_str="###",
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
import uvicorn
|
|
|
|
|
from server.utils import MakeFastAPIOffline
|
|
|
|
|
from fastchat.serve.model_worker import app
|
|
|
|
|
|
|
|
|
|
worker = ChatGLMWorker(
|
|
|
|
|
controller_addr="http://127.0.0.1:20001",
|
|
|
|
|
worker_addr="http://127.0.0.1:21001",
|
|
|
|
|
)
|
|
|
|
|
sys.modules["fastchat.serve.model_worker"].worker = worker
|
|
|
|
|
MakeFastAPIOffline(app)
|
|
|
|
|
uvicorn.run(app, port=21001)
|