codefuse-chatbot/dev_opsgpt/connector/agents/check_agent.py

111 lines
4.8 KiB
Python
Raw Normal View History

from pydantic import BaseModel
from typing import List, Union
import re
import json
import traceback
import copy
from loguru import logger
from langchain.prompts.chat import ChatPromptTemplate
from dev_opsgpt.connector.schema import (
Memory, Task, Env, Role, Message, ActionStatus
)
from dev_opsgpt.llm_models import getChatModel
from dev_opsgpt.connector.configs.agent_config import REACT_PROMPT_INPUT, CONTEXT_PROMPT_INPUT, QUERY_CONTEXT_PROMPT_INPUT
from .base_agent import BaseAgent
class CheckAgent(BaseAgent):
def __init__(
self,
role: Role,
task: Task = None,
memory: Memory = None,
chat_turn: int = 1,
do_search: bool = False,
do_doc_retrieval: bool = False,
do_tool_retrieval: bool = False,
temperature: float = 0.2,
stop: Union[List[str], str] = None,
do_filter: bool = True,
do_use_self_memory: bool = True,
focus_agents: List[str] = [],
focus_message_keys: List[str] = [],
# prompt_mamnger: PromptManager
):
super().__init__(role, task, memory, chat_turn, do_search, do_doc_retrieval,
do_tool_retrieval, temperature, stop, do_filter,do_use_self_memory,
focus_agents, focus_message_keys
)
def create_prompt(
self, query: Message, memory: Memory =None, history: Memory = None, background: Memory = None, memory_pool: Memory=None, prompt_mamnger=None) -> str:
'''
role\task\tools\docs\memory
'''
#
doc_infos = self.create_doc_prompt(query)
code_infos = self.create_codedoc_prompt(query)
#
formatted_tools, tool_names, _ = self.create_tools_prompt(query)
task_prompt = self.create_task_prompt(query)
background_prompt = self.create_background_prompt(background)
history_prompt = self.create_history_prompt(history)
selfmemory_prompt = self.create_selfmemory_prompt(memory, control_key="step_content")
# react 流程是自身迭代过程,另外二次触发的是需要作为历史对话信息
# input_query = react_memory.to_tuple_messages(content_key="step_content")
input_query = query.input_query
# logger.debug(f"{self.role.role_name} extra_system_prompt: {self.role.role_prompt}")
# logger.debug(f"{self.role.role_name} input_query: {input_query}")
# logger.debug(f"{self.role.role_name} doc_infos: {doc_infos}")
# logger.debug(f"{self.role.role_name} tool_names: {tool_names}")
# prompt += "\n" + CHECK_PROMPT_INPUT.format(**{"query": input_query})
# prompt.format(**{"query": input_query})
# extra_system_prompt = self.role.role_prompt
prompt = self.role.role_prompt.format(**{"query": input_query, "formatted_tools": formatted_tools, "tool_names": tool_names})
if "**Context:**" in self.role.role_prompt:
# logger.debug(f"parsed_output_list: {query.parsed_output_list}")
# input_query = "'''" + "\n".join([f"*{k}*\n{v}" for i in background.get_parserd_output_list() for k,v in i.items() if "Action Status" !=k]) + "'''"
context = "\n".join([f"*{k}*\n{v}" for i in background.get_parserd_output_list() for k,v in i.items() if "Action Status" !=k])
# logger.debug(context)
# logger.debug(f"parsed_output_list: {t}")
prompt += "\n" + QUERY_CONTEXT_PROMPT_INPUT.format(**{"query": query.origin_query, "context": context})
else:
prompt += "\n" + REACT_PROMPT_INPUT.format(**{"query": input_query})
task = query.task or self.task
if task_prompt is not None:
prompt += "\n" + task.task_prompt
# if doc_infos is not None and doc_infos!="" and doc_infos!="不存在知识库辅助信息":
# prompt += f"\n知识库信息: {doc_infos}"
# if code_infos is not None and code_infos!="" and code_infos!="不存在代码库辅助信息":
# prompt += f"\n代码库信息: {code_infos}"
# if background_prompt:
# prompt += "\n" + background_prompt
# if history_prompt:
# prompt += "\n" + history_prompt
# if selfmemory_prompt:
# prompt += "\n" + selfmemory_prompt
# prompt = extra_system_prompt.format(**{"query": input_query, "doc_infos": doc_infos, "formatted_tools": formatted_tools, "tool_names": tool_names})
while "{{" in prompt or "}}" in prompt:
prompt = prompt.replace("{{", "{")
prompt = prompt.replace("}}", "}")
# logger.debug(f"{self.role.role_name} prompt: {prompt}")
return prompt