codefuse-chatbot/sources/readme_docs/start.md

111 lines
3.7 KiB
Markdown
Raw Permalink Normal View History

2023-12-27 17:40:54 +08:00
请自行安装 nvidia 驱动程序,本项目已在 Python 3.9.18CUDA 11.7 环境下Windows、X86 架构的 macOS 系统中完成测试。
1、python 环境准备
- 推荐采用 conda 对 python 环境进行管理(可选)
```bash
# 准备 conda 环境
conda create --name devopsgpt python=3.9
conda activate devopsgpt
```
- 安装相关依赖
```bash
cd codefuse-chatbot
# python=3.9notebook用最新即可python=3.8用notebook=6.5.6
pip install -r requirements.txt
```
2、沙盒环境准备
- windows Docker 安装:
[Docker Desktop for Windows](https://docs.docker.com/desktop/install/windows-install/) 支持 64 位版本的 Windows 10 Pro且必须开启 Hyper-V若版本为 v1903 及以上则无需开启 Hyper-V或者 64 位版本的 Windows 10 Home v1903 及以上版本。
- [【全面详细】Windows10 Docker安装详细教程](https://zhuanlan.zhihu.com/p/441965046)
- [Docker 从入门到实践](https://yeasy.gitbook.io/docker_practice/install/windows)
- [Docker Desktop requires the Server service to be enabled 处理](https://blog.csdn.net/sunhy_csdn/article/details/106526991)
- [安装wsl或者等报错提示](https://learn.microsoft.com/zh-cn/windows/wsl/install)
- Linux Docker 安装:
Linux 安装相对比较简单,请自行 baidu/google 相关安装
- Mac Docker 安装
- [Docker 从入门到实践](https://yeasy.gitbook.io/docker_practice/install/mac)
```bash
# 构建沙盒环境的镜像notebook版本问题见上述
bash docker_build.sh
```
3、模型下载可选
如需使用开源 LLM 与 Embedding 模型可以从 HuggingFace 下载。
此处以 THUDM/chatglm2-6bm 和 text2vec-base-chinese 为例:
```
# install git-lfs
git lfs install
# install LLM-model
git lfs clone https://huggingface.co/THUDM/chatglm2-6b
cp ~/THUDM/chatglm2-6b ~/codefuse-chatbot/llm_models/
# install Embedding-model
git lfs clone https://huggingface.co/shibing624/text2vec-base-chinese
cp ~/shibing624/text2vec-base-chinese ~/codefuse-chatbot/embedding_models/
```
4、基础配置
```bash
# 修改服务启动的基础配置
cd configs
cp model_config.py.example model_config.py
cp server_config.py.example server_config.py
# model_config#11~12 若需要使用openai接口openai接口key
os.environ["OPENAI_API_KEY"] = "sk-xxx"
# 可自行替换自己需要的api_base_url
os.environ["API_BASE_URL"] = "https://api.openai.com/v1"
# vi model_config#LLM_MODEL 你需要选择的语言模型
LLM_MODEL = "gpt-3.5-turbo"
LLM_MODELs = ["gpt-3.5-turbo"]
# vi model_config#EMBEDDING_MODEL 你需要选择的私有化向量模型
EMBEDDING_ENGINE = 'model'
EMBEDDING_MODEL = "text2vec-base"
# vi model_config#embedding_model_dict 修改成你的本地路径如果能直接连接huggingface则无需修改
# 若模型地址为:
model_dir: ~/codefuse-chatbot/embedding_models/shibing624/text2vec-base-chinese
# 配置如下
"text2vec-base": "shibing624/text2vec-base-chinese",
# vi server_config#8~14, 推荐采用容器启动服务
DOCKER_SERVICE = True
# 是否采用容器沙箱
SANDBOX_DO_REMOTE = True
# 是否采用api服务来进行
NO_REMOTE_API = True
```
5、启动服务
默认只启动webui相关服务未启动fastchat可选
```bash
# 若需要支撑codellama-34b-int4模型需要给fastchat打一个补丁
# cp examples/gptq.py ~/site-packages/fastchat/modules/gptq.py
# dev_opsgpt/service/llm_api.py#258 修改为 kwargs={"gptq_wbits": 4},
# start llm-service可选
python dev_opsgpt/service/llm_api.py
```
更多LLM接入方法见[详情...](./fastchat.md)
<br>
```bash
# 完成server_config.py配置后可一键启动
cd examples
python start.py
```