codefuse-chatbot/dev_opsgpt/codechat/codebase_handler/code_importer.py

176 lines
17 KiB
Python
Raw Permalink Normal View History

# encoding: utf-8
'''
@author: 温进
@file: codebase_handler.py
@time: 2023/11/21 下午2:07
@desc:
'''
import time
from loguru import logger
from configs.server_config import NEBULA_HOST, NEBULA_PORT, NEBULA_USER, NEBULA_PASSWORD, NEBULA_STORAGED_PORT
from configs.server_config import CHROMA_PERSISTENT_PATH
from dev_opsgpt.db_handler.graph_db_handler.nebula_handler import NebulaHandler
from dev_opsgpt.db_handler.vector_db_handler.chroma_handler import ChromaHandler
from dev_opsgpt.embeddings.get_embedding import get_embedding
class CodeImporter:
def __init__(self, codebase_name: str, engine: str, nh: NebulaHandler, ch: ChromaHandler):
self.codebase_name = codebase_name
self.engine = engine
self.nh = nh
self.ch = ch
def import_code(self, static_analysis_res: dict, interpretation: dict, do_interpret: bool = True):
'''
import code to nebula and chroma
@return:
'''
self.analysis_res_to_graph(static_analysis_res)
self.interpretation_to_db(static_analysis_res, interpretation, do_interpret)
def analysis_res_to_graph(self, static_analysis_res):
'''
transform static_analysis_res to tuple
@param static_analysis_res:
@return:
'''
vertex_value_dict = {
'package':{
'properties_name': [],
'values': {}
},
'class': {
'properties_name': [],
'values': {}
},
'method': {
'properties_name': [],
'values': {}
},
}
edge_value_dict = {
'contain': {
'properties_name': [],
'values': {}
},
'depend': {
'properties_name': [],
'values': {}
}
}
for _, structure in static_analysis_res.items():
pac_name = structure['pac_name']
vertex_value_dict['package']['values'][pac_name] = []
for class_name in structure['class_name_list']:
vertex_value_dict['class']['values'][class_name] = []
edge_value_dict['contain']['values'][(pac_name, class_name)] = []
for func_name in structure['func_name_dict'].get(class_name, []):
vertex_value_dict['method']['values'][func_name] = []
edge_value_dict['contain']['values'][(class_name, func_name)] = []
for depend_pac_name in structure['import_pac_name_list']:
vertex_value_dict['package']['values'][depend_pac_name] = []
edge_value_dict['depend']['values'][(pac_name, depend_pac_name)] = []
# create vertex
for tag_name, value_dict in vertex_value_dict.items():
res = self.nh.insert_vertex(tag_name, value_dict)
logger.debug(res.error_msg())
# create edge
for tag_name, value_dict in edge_value_dict.items():
res = self.nh.insert_edge(tag_name, value_dict)
logger.debug(res.error_msg())
return
def interpretation_to_db(self, static_analysis_res, interpretation, do_interpret):
'''
vectorize interpretation and save to db
@return:
'''
# if not do_interpret, fake some vector
if do_interpret:
logger.info('start get embedding for interpretion')
interp_list = list(interpretation.values())
emb = get_embedding(engine=self.engine, text_list=interp_list)
logger.info('get embedding done')
else:
emb = {i: [0] for i in list(interpretation.values())}
ids = []
embeddings = []
documents = []
metadatas = []
for code_text, interp in interpretation.items():
pac_name = static_analysis_res[code_text]['pac_name']
if pac_name in ids:
continue
ids.append(pac_name)
documents.append(interp)
metadatas.append({
'code_text': code_text
})
embeddings.append(emb[interp])
# add documents to chroma
res = self.ch.add_data(ids=ids, embeddings=embeddings, documents=documents, metadatas=metadatas)
logger.debug(res)
def init_graph(self):
'''
init graph
@return:
'''
res = self.nh.create_space(space_name=self.codebase_name, vid_type='FIXED_STRING(1024)')
logger.debug(res.error_msg())
time.sleep(5)
self.nh.set_space_name(self.codebase_name)
logger.info(f'space_name={self.nh.space_name}')
# create tag
tag_name = 'package'
prop_dict = {}
res = self.nh.create_tag(tag_name, prop_dict)
logger.debug(res.error_msg())
tag_name = 'class'
prop_dict = {}
res = self.nh.create_tag(tag_name, prop_dict)
logger.debug(res.error_msg())
tag_name = 'method'
prop_dict = {}
res = self.nh.create_tag(tag_name, prop_dict)
logger.debug(res.error_msg())
# create edge type
edge_type_name = 'contain'
prop_dict = {}
res = self.nh.create_edge_type(edge_type_name, prop_dict)
logger.debug(res.error_msg())
# create edge type
edge_type_name = 'depend'
prop_dict = {}
res = self.nh.create_edge_type(edge_type_name, prop_dict)
logger.debug(res.error_msg())
if __name__ == '__main__':
static_res = {'package com.theokanning.openai.client;\nimport com.theokanning.openai.DeleteResult;\nimport com.theokanning.openai.OpenAiResponse;\nimport com.theokanning.openai.audio.TranscriptionResult;\nimport com.theokanning.openai.audio.TranslationResult;\nimport com.theokanning.openai.billing.BillingUsage;\nimport com.theokanning.openai.billing.Subscription;\nimport com.theokanning.openai.completion.CompletionRequest;\nimport com.theokanning.openai.completion.CompletionResult;\nimport com.theokanning.openai.completion.chat.ChatCompletionRequest;\nimport com.theokanning.openai.completion.chat.ChatCompletionResult;\nimport com.theokanning.openai.edit.EditRequest;\nimport com.theokanning.openai.edit.EditResult;\nimport com.theokanning.openai.embedding.EmbeddingRequest;\nimport com.theokanning.openai.embedding.EmbeddingResult;\nimport com.theokanning.openai.engine.Engine;\nimport com.theokanning.openai.file.File;\nimport com.theokanning.openai.fine_tuning.FineTuningEvent;\nimport com.theokanning.openai.fine_tuning.FineTuningJob;\nimport com.theokanning.openai.fine_tuning.FineTuningJobRequest;\nimport com.theokanning.openai.finetune.FineTuneEvent;\nimport com.theokanning.openai.finetune.FineTuneRequest;\nimport com.theokanning.openai.finetune.FineTuneResult;\nimport com.theokanning.openai.image.CreateImageRequest;\nimport com.theokanning.openai.image.ImageResult;\nimport com.theokanning.openai.model.Model;\nimport com.theokanning.openai.moderation.ModerationRequest;\nimport com.theokanning.openai.moderation.ModerationResult;\nimport io.reactivex.Single;\nimport okhttp3.MultipartBody;\nimport okhttp3.RequestBody;\nimport okhttp3.ResponseBody;\nimport retrofit2.Call;\nimport retrofit2.http.*;\nimport java.time.LocalDate;\npublic interface OpenAiApi {\n @GET("v1/models")\n Single<OpenAiResponse<Model>> listModels();\n @GET("/v1/models/{model_id}")\n Single<Model> getModel(@Path("model_id") String modelId);\n @POST("/v1/completions")\n Single<CompletionResult> createCompletion(@Body CompletionRequest request);\n @Streaming\n @POST("/v1/completions")\n Call<ResponseBody> createCompletionStream(@Body CompletionRequest request);\n @POST("/v1/chat/completions")\n Single<ChatCompletionResult> createChatCompletion(@Body ChatCompletionRequest request);\n @Streaming\n @POST("/v1/chat/completions")\n Call<ResponseBody> createChatCompletionStream(@Body ChatCompletionRequest request);\n @Deprecated\n @POST("/v1/engines/{engine_id}/completions")\n Single<CompletionResult> createCompletion(@Path("engine_id") String engineId, @Body CompletionRequest request);\n @POST("/v1/edits")\n Single<EditResult> createEdit(@Body EditRequest request);\n @Deprecated\n @POST("/v1/engines/{engine_id}/edits")\n Single<EditResult> createEdit(@Path("engine_id") String engineId, @Body EditRequest request);\n @POST("/v1/embeddings")\n Single<EmbeddingResult> createEmbeddings(@Body EmbeddingRequest request);\n @Deprecated\n @POST("/v1/engines/{engine_id}/embeddings")\n Single<EmbeddingResult> createEmbeddings(@Path("engine_id") String engineId, @Body EmbeddingRequest request);\n @GET("/v1/files")\n Single<OpenAiResponse<File>> listFiles();\n @Multipart\n @POST("/v1/files")\n Single<File> uploadFile(@Part("purpose") RequestBody purpose, @Part MultipartBody.Part file);\n @DELETE("/v1/files/{file_id}")\n Single<DeleteResult> deleteFile(@Path("file_id") String fileId);\n @GET("/v1/files/{file_id}")\n Single<File> retrieveFile(@Path("file_id") String fileId);\n @Streaming\n @GET("/v1/files/{file_id}/content")\n Single<ResponseBody> retrieveFileContent(@Path("file_id") String fileId);\n @POST("/v1/fine_tuning/jobs")\n Single<FineTuningJob> createFineTuningJob(@Body FineTuningJobRequest request);\n @GET("/v1/fine_tuning/jobs")\n Single<OpenAiResponse<FineTuningJob>> listFineTuningJobs();\n @GET("/v1/fine_tuning/jobs/{fine_tuning_job_id}")\n Single<FineTuningJob> retrieveFineTuningJob(@Path("fine_tuning_job_id") String fineTuningJ