codefuse-chatbot/examples/webui/utils.py

1214 lines
41 KiB
Python
Raw Permalink Normal View History

2023-09-28 10:58:58 +08:00
# 该文件包含webui通用工具可以被不同的webui使用
from typing import *
from pathlib import Path
from io import BytesIO
import httpx
import asyncio
from fastapi.responses import StreamingResponse
import contextlib
import json
import nltk
import traceback
from loguru import logger
2023-09-28 10:58:58 +08:00
from configs.model_config import (
EMBEDDING_MODEL,
DEFAULT_VS_TYPE,
KB_ROOT_PATH,
CB_ROOT_PATH,
2023-09-28 10:58:58 +08:00
LLM_MODEL,
SCORE_THRESHOLD,
VECTOR_SEARCH_TOP_K,
SEARCH_ENGINE_TOP_K,
NLTK_DATA_PATH,
JUPYTER_WORK_PATH,
2023-09-28 10:58:58 +08:00
)
from configs.server_config import SANDBOX_SERVER
# from configs.server_config import SANDBOX_SERVER
from muagent.utils.server_utils import run_async, iter_over_async
from muagent.service.kb_api import *
from muagent.service.cb_api import *
from muagent.chat import LLMChat, SearchChat, KnowledgeChat, CodeChat, AgentChat
from muagent.sandbox import PyCodeBox, CodeBoxResponse
from muagent.utils.common_utils import file_normalize, get_uploadfile
from muagent.codechat.code_crawler.zip_crawler import ZipCrawler
2023-09-28 10:58:58 +08:00
from web_crawler.utils.WebCrawler import WebCrawler
# nltk.data.path = [NLTK_DATA_PATH] + nltk.data.path
2023-09-28 10:58:58 +08:00
def set_httpx_timeout(timeout=60.0):
'''
设置httpx默认timeout到60秒
httpx默认timeout是5秒在请求LLM回答时不够用
'''
httpx._config.DEFAULT_TIMEOUT_CONFIG.connect = timeout
httpx._config.DEFAULT_TIMEOUT_CONFIG.read = timeout
httpx._config.DEFAULT_TIMEOUT_CONFIG.write = timeout
# KB_ROOT_PATH = Path(KB_ROOT_PATH)
2023-09-28 10:58:58 +08:00
set_httpx_timeout()
class ApiRequest:
'''
api.py调用的封装,主要实现:
1. 简化api调用方式
2. 实现无api调用(直接运行server.chat.*中的视图函数获取结果),无需启动api.py
'''
def __init__(
self,
base_url: str = "http://127.0.0.1:7861",
sandbox_file_url: str = "http://127.0.0.1:7862",
2023-09-28 10:58:58 +08:00
timeout: float = 60.0,
no_remote_api: bool = False, # call api view function directly
cb_root_path: str = "",
2023-09-28 10:58:58 +08:00
):
self.base_url = base_url
self.sandbox_file_url = sandbox_file_url
2023-09-28 10:58:58 +08:00
self.timeout = timeout
self.no_remote_api = no_remote_api
self.cb_root_path = cb_root_path
2023-09-28 10:58:58 +08:00
self.llmChat = LLMChat()
self.searchChat = SearchChat()
self.knowledgeChat = KnowledgeChat(kb_root_path=KB_ROOT_PATH)
self.codeChat = CodeChat()
self.agentChat = AgentChat()
# self.codebox = PyCodeBox(
# remote_url=self.sandbox_server["url"],
# remote_ip=self.sandbox_server["host"], # "http://localhost",
# remote_port=self.sandbox_server["port"],
# token="mytoken",
# do_code_exe=True,
# do_remote=self.sandbox_server["do_remote"]
# )
2023-09-28 10:58:58 +08:00
# def codebox_chat(self, text: str, file_path: str = None, do_code_exe: bool = None) -> CodeBoxResponse:
# return self.codebox.chat(text, file_path, do_code_exe=do_code_exe)
2023-09-28 10:58:58 +08:00
def _parse_url(self, url: str) -> str:
if (not url.startswith("http")
and self.base_url
):
part1 = self.sandbox_file_url.strip(" /") \
if "sdfiles" in url else self.base_url.strip(" /")
2023-09-28 10:58:58 +08:00
part2 = url.strip(" /")
return f"{part1}/{part2}"
else:
return url
def get(
self,
url: str,
params: Union[Dict, List[Tuple], bytes] = None,
retry: int = 3,
stream: bool = False,
**kwargs: Any,
) -> Union[httpx.Response, None]:
url = self._parse_url(url)
kwargs.setdefault("timeout", self.timeout)
while retry > 0:
try:
if stream:
return httpx.stream("GET", url, params=params, **kwargs)
else:
return httpx.get(url, params=params, **kwargs)
except Exception as e:
logger.error(e)
retry -= 1
async def aget(
self,
url: str,
params: Union[Dict, List[Tuple], bytes] = None,
retry: int = 3,
stream: bool = False,
**kwargs: Any,
) -> Union[httpx.Response, None]:
url = self._parse_url(url)
kwargs.setdefault("timeout", self.timeout)
async with httpx.AsyncClient() as client:
while retry > 0:
try:
if stream:
return await client.stream("GET", url, params=params, **kwargs)
else:
return await client.get(url, params=params, **kwargs)
except Exception as e:
logger.error(e)
retry -= 1
def post(
self,
url: str,
data: Dict = None,
json: Dict = None,
retry: int = 3,
stream: bool = False,
**kwargs: Any
) -> Union[httpx.Response, None]:
url = self._parse_url(url)
kwargs.setdefault("timeout", self.timeout)
while retry > 0:
try:
# return requests.post(url, data=data, json=json, stream=stream, **kwargs)
if stream:
return httpx.stream("POST", url, data=data, json=json, **kwargs)
else:
return httpx.post(url, data=data, json=json, **kwargs)
except Exception as e:
logger.error(e)
retry -= 1
async def apost(
self,
url: str,
data: Dict = None,
json: Dict = None,
retry: int = 3,
stream: bool = False,
**kwargs: Any
) -> Union[httpx.Response, None]:
url = self._parse_url(url)
kwargs.setdefault("timeout", self.timeout)
async with httpx.AsyncClient() as client:
while retry > 0:
try:
if stream:
return await client.stream("POST", url, data=data, json=json, **kwargs)
else:
return await client.post(url, data=data, json=json, **kwargs)
except Exception as e:
logger.error(e)
retry -= 1
def delete(
self,
url: str,
data: Dict = None,
json: Dict = None,
retry: int = 3,
stream: bool = False,
**kwargs: Any
) -> Union[httpx.Response, None]:
url = self._parse_url(url)
kwargs.setdefault("timeout", self.timeout)
while retry > 0:
try:
if stream:
return httpx.stream("DELETE", url, data=data, json=json, **kwargs)
else:
return httpx.delete(url, data=data, json=json, **kwargs)
except Exception as e:
logger.error(e)
retry -= 1
async def adelete(
self,
url: str,
data: Dict = None,
json: Dict = None,
retry: int = 3,
stream: bool = False,
**kwargs: Any
) -> Union[httpx.Response, None]:
url = self._parse_url(url)
kwargs.setdefault("timeout", self.timeout)
async with httpx.AsyncClient() as client:
while retry > 0:
try:
if stream:
return await client.stream("DELETE", url, data=data, json=json, **kwargs)
else:
return await client.delete(url, data=data, json=json, **kwargs)
except Exception as e:
logger.error(e)
retry -= 1
def _fastapi_stream2generator(self, response: StreamingResponse, as_json: bool =False):
'''
将api.py中视图函数返回的StreamingResponse转化为同步生成器
'''
try:
loop = asyncio.get_event_loop()
except:
loop = asyncio.new_event_loop()
try:
for chunk in iter_over_async(response.body_iterator, loop):
if as_json and chunk:
yield json.loads(chunk)
elif chunk.strip():
yield chunk
except Exception as e:
logger.error(traceback.format_exc())
def _stream2generator(self, response: str, as_json: bool =False):
'''
将api.py中视图函数返回的StreamingResponse转化为同步生成器
'''
try:
if as_json and response:
return json.loads(response)
elif response.strip():
return response
except Exception as e:
logger.error(traceback.format_exc())
2023-09-28 10:58:58 +08:00
def _httpx_stream2generator(
self,
response: contextlib._GeneratorContextManager,
as_json: bool = False,
):
'''
将httpx.stream返回的GeneratorContextManager转化为普通生成器
'''
try:
with response as r:
for chunk in r.iter_text(None):
if as_json and chunk:
yield json.loads(chunk)
elif chunk.strip():
yield chunk
except httpx.ConnectError as e:
msg = f"无法连接API服务器请确认 api.py 已正常启动。"
logger.error(msg)
logger.error(e)
yield {"code": 500, "msg": msg}
except httpx.ReadTimeout as e:
msg = f"API通信超时请确认已启动FastChat与API服务详见RADME '5. 启动 API 服务或 Web UI'"
logger.error(msg)
logger.error(e)
yield {"code": 500, "msg": msg}
except Exception as e:
logger.error(e)
yield {"code": 500, "msg": str(e)}
def chat_chat(
self,
query: str,
history: List[Dict] = [],
stream: bool = True,
no_remote_api: bool = None,
embed_model: str="", embed_model_path: str="", model_device: str="", embed_engine: str="",
llm_model: str ="", temperature: float= 0.2,
api_key: str=os.environ["OPENAI_API_KEY"],
api_base_url: str = os.environ["API_BASE_URL"],
2023-09-28 10:58:58 +08:00
):
'''
对应api.py/chat/chat接口
'''
if no_remote_api is None:
no_remote_api = self.no_remote_api
data = {
"query": query,
"history": history,
"stream": stream,
"api_key": api_key,
"api_base_url": api_base_url,
"embed_model": embed_model,
"embed_model_path": embed_model_path,
"embed_engine": embed_engine,
"model_name": llm_model,
"temperature": temperature,
"model_device": model_device,
"temperature": temperature,
2023-09-28 10:58:58 +08:00
}
if no_remote_api:
response = self.llmChat.chat(**data)
return self._fastapi_stream2generator(response, as_json=True)
else:
response = self.post("/chat/chat", json=data, stream=True)
return self._httpx_stream2generator(response)
def knowledge_base_chat(
self,
query: str,
knowledge_base_name: str,
top_k: int = 5,
score_threshold: float = 1.0,
2023-09-28 10:58:58 +08:00
history: List[Dict] = [],
stream: bool = True,
no_remote_api: bool = None,
embed_model: str="", embed_model_path: str="", model_device: str="", embed_engine: str="",
llm_model: str ="", temperature: float= 0.2,
api_key: str=os.environ["OPENAI_API_KEY"],
api_base_url: str = os.environ["API_BASE_URL"],
2023-09-28 10:58:58 +08:00
):
'''
对应api.py/chat/knowledge_base_chat接口
'''
if no_remote_api is None:
no_remote_api = self.no_remote_api
data = {
"query": query,
"engine_name": knowledge_base_name,
"top_k": top_k,
"score_threshold": score_threshold,
"history": history,
"stream": stream,
"local_doc_url": no_remote_api,
"api_key": api_key,
"api_base_url": api_base_url,
"embed_model": embed_model,
"embed_model_path": embed_model_path,
"embed_engine": embed_engine,
"model_name": llm_model,
"temperature": temperature,
"model_device": model_device,
"temperature": temperature,
2023-09-28 10:58:58 +08:00
}
if no_remote_api:
response = self.knowledgeChat.chat(**data)
return self._fastapi_stream2generator(response, as_json=True)
else:
response = self.post(
"/chat/knowledge_base_chat",
json=data,
stream=True,
)
return self._httpx_stream2generator(response, as_json=True)
def search_engine_chat(
self,
query: str,
search_engine_name: str,
top_k: int,
history: List[Dict] = [],
2023-09-28 10:58:58 +08:00
stream: bool = True,
no_remote_api: bool = None,
embed_model: str="", embed_model_path: str="", model_device: str="", embed_engine: str="",
llm_model: str ="", temperature: float= 0.2,
api_key: str=os.environ["OPENAI_API_KEY"],
api_base_url: str = os.environ["API_BASE_URL"],
2023-09-28 10:58:58 +08:00
):
'''
对应api.py/chat/search_engine_chat接口
'''
if no_remote_api is None:
no_remote_api = self.no_remote_api
data = {
"query": query,
"engine_name": search_engine_name,
"top_k": top_k,
"history": history,
2023-09-28 10:58:58 +08:00
"stream": stream,
"api_key": api_key,
"api_base_url": api_base_url,
"embed_model": embed_model,
"embed_model_path": embed_model_path,
"embed_engine": embed_engine,
"model_name": llm_model,
"temperature": temperature,
"model_device": model_device,
"temperature": temperature,
2023-09-28 10:58:58 +08:00
}
if no_remote_api:
response = self.searchChat.chat(**data)
return self._fastapi_stream2generator(response, as_json=True)
else:
response = self.post(
"/chat/search_engine_chat",
json=data,
stream=True,
)
return self._httpx_stream2generator(response, as_json=True)
def code_base_chat(
self,
query: str,
code_base_name: str,
code_limit: int = 1,
history: List[Dict] = [],
cb_search_type: str = 'tag',
stream: bool = True,
no_remote_api: bool = None,
embed_model: str="", embed_model_path: str="", model_device: str="", embed_engine: str="",
llm_model: str ="", temperature: float= 0.2,
api_key: str=os.environ["OPENAI_API_KEY"],
api_base_url: str = os.environ["API_BASE_URL"],
):
'''
对应api.py/chat/knowledge_base_chat接口
'''
if no_remote_api is None:
no_remote_api = self.no_remote_api
cb_search_type = {
'基于 cypher': 'cypher',
'基于标签': 'tag',
'基于描述': 'description',
'tag': 'tag',
'description': 'description',
'cypher': 'cypher'
}.get(cb_search_type, 'tag')
data = {
"query": query,
"history": history,
"engine_name": code_base_name,
"code_limit": code_limit,
"cb_search_type": cb_search_type,
"stream": stream,
"local_doc_url": no_remote_api,
"api_key": api_key,
"api_base_url": api_base_url,
"embed_model": embed_model,
"embed_model_path": embed_model_path,
"embed_engine": embed_engine,
"model_name": llm_model,
"temperature": temperature,
"model_device": model_device,
}
logger.info('data={}'.format(data))
if no_remote_api:
# logger.info('history_node_list before={}'.format(self.codeChat.history_node_list))
response = self.codeChat.chat(**data)
# logger.info('history_node_list after={}'.format(self.codeChat.history_node_list))
return self._fastapi_stream2generator(response, as_json=True)
else:
response = self.post(
"/chat/code_chat",
json=data,
stream=True,
)
return self._httpx_stream2generator(response, as_json=True)
def agent_chat(
self,
query: str,
phase_name: str,
doc_engine_name: str,
code_engine_name: str,
search_engine_name: str,
top_k: int = 3,
score_threshold: float = 1.0,
history: List[Dict] = [],
stream: bool = True,
local_doc_url: bool = False,
do_search: bool = False,
do_doc_retrieval: bool = False,
do_code_retrieval: bool = False,
do_tool_retrieval: bool = False,
choose_tools: List[str] = [],
custom_phase_configs = {},
custom_chain_configs = {},
custom_role_configs = {},
no_remote_api: bool = None,
history_node_list: List[str] = [],
isDetailed: bool = False,
upload_file: Union[str, Path, bytes] = "",
kb_root_path: str =KB_ROOT_PATH,
embed_model: str="", embed_model_path: str="",
model_device: str="", embed_engine: str="",
temperature: float=0.2, model_name:str ="",
api_key: str=os.environ["OPENAI_API_KEY"],
api_base_url: str = os.environ["API_BASE_URL"],
):
'''
对应api.py/chat/chat接口
'''
if no_remote_api is None:
no_remote_api = self.no_remote_api
data = {
"query": query,
"phase_name": phase_name,
"chain_name": "",
"history": history,
"doc_engine_name": doc_engine_name,
"code_engine_name": code_engine_name,
"search_engine_name": search_engine_name,
"top_k": top_k,
"score_threshold": score_threshold,
"stream": stream,
"local_doc_url": local_doc_url,
"do_search": do_search,
"do_doc_retrieval": do_doc_retrieval,
"do_code_retrieval": do_code_retrieval,
"do_tool_retrieval": do_tool_retrieval,
"custom_phase_configs": custom_phase_configs,
"custom_chain_configs": custom_phase_configs,
"custom_role_configs": custom_role_configs,
"choose_tools": choose_tools,
"history_node_list": history_node_list,
"isDetailed": isDetailed,
"upload_file": upload_file,
"kb_root_path": kb_root_path,
"api_key": api_key,
"api_base_url": api_base_url,
"embed_model": embed_model,
"embed_model_path": embed_model_path,
"embed_engine": embed_engine,
"model_device": model_device,
"model_name": model_name,
"temperature": temperature,
"jupyter_work_path": JUPYTER_WORK_PATH,
"sandbox_server": SANDBOX_SERVER,
}
if no_remote_api:
response = self.agentChat.chat(**data)
return self._fastapi_stream2generator(response, as_json=True)
else:
response = self.post("/chat/data_chat", json=data, stream=True)
return self._httpx_stream2generator(response)
def agent_achat(
self,
query: str,
phase_name: str,
doc_engine_name: str,
code_engine_name: str,
cb_search_type: str,
search_engine_name: str,
top_k: int = 3,
score_threshold: float = 1.0,
history: List[Dict] = [],
stream: bool = True,
local_doc_url: bool = False,
do_search: bool = False,
do_doc_retrieval: bool = False,
do_code_retrieval: bool = False,
do_tool_retrieval: bool = False,
choose_tools: List[str] = [],
custom_phase_configs = {},
custom_chain_configs = {},
custom_role_configs = {},
no_remote_api: bool = None,
history_node_list: List[str] = [],
isDetailed: bool = False,
upload_file: Union[str, Path, bytes] = "",
kb_root_path: str =KB_ROOT_PATH,
embed_model: str="", embed_model_path: str="",
model_device: str="", embed_engine: str="",
temperature: float=0.2, model_name: str="",
api_key: str=os.environ["OPENAI_API_KEY"],
api_base_url: str = os.environ["API_BASE_URL"],
):
'''
对应api.py/chat/chat接口
'''
if no_remote_api is None:
no_remote_api = self.no_remote_api
data = {
"query": query,
"phase_name": phase_name,
"chain_name": "",
"history": history,
"doc_engine_name": doc_engine_name,
"code_engine_name": code_engine_name,
"cb_search_type": cb_search_type,
"search_engine_name": search_engine_name,
"top_k": top_k,
"score_threshold": score_threshold,
"stream": stream,
"local_doc_url": local_doc_url,
"do_search": do_search,
"do_doc_retrieval": do_doc_retrieval,
"do_code_retrieval": do_code_retrieval,
"do_tool_retrieval": do_tool_retrieval,
"custom_phase_configs": custom_phase_configs,
"custom_chain_configs": custom_chain_configs,
"custom_role_configs": custom_role_configs,
"choose_tools": choose_tools,
"history_node_list": history_node_list,
"isDetailed": isDetailed,
"upload_file": upload_file,
"kb_root_path": kb_root_path,
"api_key": api_key,
"api_base_url": api_base_url,
"embed_model": embed_model,
"embed_model_path": embed_model_path,
"embed_engine": embed_engine,
"model_device": model_device,
"model_name": model_name,
"temperature": temperature,
"jupyter_work_path": JUPYTER_WORK_PATH,
"sandbox_server": SANDBOX_SERVER,
}
if no_remote_api:
for response in self.agentChat.achat(**data):
yield self._stream2generator(response, as_json=True)
else:
response = self.post("/chat/data_chat", json=data, stream=True)
yield self._httpx_stream2generator(response)
2023-09-28 10:58:58 +08:00
def _check_httpx_json_response(
self,
response: httpx.Response,
errorMsg: str = f"无法连接API服务器请确认已执行python server\\api.py",
) -> Dict:
'''
check whether httpx returns correct data with normal Response.
error in api with streaming support was checked in _httpx_stream2enerator
'''
try:
return response.json()
except Exception as e:
logger.error(e)
return {"code": 500, "msg": errorMsg or str(e)}
def _check_httpx_file_response(
self,
response: httpx.Response,
errorMsg: str = f"无法连接API服务器请确认已执行python server\\api.py",
) -> Dict:
'''
check whether httpx returns correct data with normal Response.
error in api with streaming support was checked in _httpx_stream2enerator
'''
try:
return response.content
except Exception as e:
logger.error(e)
return {"code": 500, "msg": errorMsg or str(e)}
2023-09-28 10:58:58 +08:00
def list_knowledge_bases(
self,
no_remote_api: bool = None,
):
'''
对应api.py/knowledge_base/list_knowledge_bases接口
'''
if no_remote_api is None:
no_remote_api = self.no_remote_api
if no_remote_api:
response = run_async(list_kbs())
return response.data
else:
response = self.get("/knowledge_base/list_knowledge_bases")
data = self._check_httpx_json_response(response)
return data.get("data", [])
def create_knowledge_base(
self,
knowledge_base_name: str,
vector_store_type: str = "faiss",
no_remote_api: bool = None,
kb_root_path: str =KB_ROOT_PATH,
embed_model: str="", embed_model_path: str="",
embedding_device: str="", embed_engine: str="",
api_key: str=os.environ["OPENAI_API_KEY"],
api_base_url: str = os.environ["API_BASE_URL"],
2023-09-28 10:58:58 +08:00
):
'''
对应api.py/knowledge_base/create_knowledge_base接口
'''
if no_remote_api is None:
no_remote_api = self.no_remote_api
data = {
"knowledge_base_name": knowledge_base_name,
"vector_store_type": vector_store_type,
"kb_root_path": kb_root_path,
"api_key": api_key,
"api_base_url": api_base_url,
2023-09-28 10:58:58 +08:00
"embed_model": embed_model,
"embed_model_path": embed_model_path,
"model_device": embedding_device,
"embed_engine": embed_engine
2023-09-28 10:58:58 +08:00
}
if no_remote_api:
response = run_async(create_kb(**data))
return response.dict()
else:
response = self.post(
"/knowledge_base/create_knowledge_base",
json=data,
)
return self._check_httpx_json_response(response)
def delete_knowledge_base(
self,
knowledge_base_name: str,
no_remote_api: bool = None,
kb_root_path: str =KB_ROOT_PATH,
2023-09-28 10:58:58 +08:00
):
'''
对应api.py/knowledge_base/delete_knowledge_base接口
'''
if no_remote_api is None:
no_remote_api = self.no_remote_api
data = {
"knowledge_base_name": knowledge_base_name,
"kb_root_path": kb_root_path,
}
2023-09-28 10:58:58 +08:00
if no_remote_api:
response = run_async(delete_kb(**data))
2023-09-28 10:58:58 +08:00
return response.dict()
else:
response = self.post(
"/knowledge_base/delete_knowledge_base",
json=f"{knowledge_base_name}",
)
return self._check_httpx_json_response(response)
def list_kb_docs(
self,
knowledge_base_name: str,
no_remote_api: bool = None,
):
'''
对应api.py/knowledge_base/list_docs接口
'''
if no_remote_api is None:
no_remote_api = self.no_remote_api
if no_remote_api:
response = run_async(list_docs(knowledge_base_name, kb_root_path=KB_ROOT_PATH))
2023-09-28 10:58:58 +08:00
return response.data
else:
response = self.get(
"/knowledge_base/list_docs",
params={"knowledge_base_name": knowledge_base_name}
)
data = self._check_httpx_json_response(response)
return data.get("data", [])
def upload_kb_doc(
self,
file: Union[str, Path, bytes],
knowledge_base_name: str,
filename: str = None,
override: bool = False,
not_refresh_vs_cache: bool = False,
no_remote_api: bool = None,
kb_root_path: str = KB_ROOT_PATH,
embed_model: str="", embed_model_path: str="",
model_device: str="", embed_engine: str="",
api_key: str=os.environ["OPENAI_API_KEY"],
api_base_url: str = os.environ["API_BASE_URL"],
2023-09-28 10:58:58 +08:00
):
'''
对应api.py/knowledge_base/upload_docs接口
'''
if no_remote_api is None:
no_remote_api = self.no_remote_api
if isinstance(file, bytes): # raw bytes
file = BytesIO(file)
elif hasattr(file, "read"): # a file io like object
filename = filename or file.name
else: # a local path
file = Path(file).absolute().open("rb")
filename = filename or file.name
if no_remote_api:
from fastapi import UploadFile
from tempfile import SpooledTemporaryFile
temp_file = SpooledTemporaryFile(max_size=10 * 1024 * 1024)
temp_file.write(file.read())
temp_file.seek(0)
response = run_async(upload_doc(
UploadFile(file=temp_file, filename=filename),
knowledge_base_name,
override,
not_refresh_vs_cache,
kb_root_path=kb_root_path,
api_key=api_key,
api_base_url=api_base_url,
embed_model=embed_model,
embed_model_path=embed_model_path,
model_device=model_device,
embed_engine=embed_engine
2023-09-28 10:58:58 +08:00
))
return response.dict()
else:
response = self.post(
"/knowledge_base/upload_doc",
data={
"knowledge_base_name": knowledge_base_name,
"override": override,
"not_refresh_vs_cache": not_refresh_vs_cache,
},
files={"file": (filename, file)},
)
return self._check_httpx_json_response(response)
def delete_kb_doc(
self,
knowledge_base_name: str,
doc_name: str,
delete_content: bool = False,
not_refresh_vs_cache: bool = False,
no_remote_api: bool = None,
kb_root_path: str = KB_ROOT_PATH,
embed_model: str="", embed_model_path: str="",
model_device: str="", embed_engine: str="",
api_key: str=os.environ["OPENAI_API_KEY"],
api_base_url: str = os.environ["API_BASE_URL"],
2023-09-28 10:58:58 +08:00
):
'''
对应api.py/knowledge_base/delete_doc接口
'''
if no_remote_api is None:
no_remote_api = self.no_remote_api
data = {
"knowledge_base_name": knowledge_base_name,
"doc_name": doc_name,
"delete_content": delete_content,
"not_refresh_vs_cache": not_refresh_vs_cache,
"kb_root_path": kb_root_path,
"api_key": api_key,
"api_base_url": api_base_url,
"embed_model": embed_model,
"embed_model_path": embed_model_path,
"model_device": model_device,
"embed_engine": embed_engine
2023-09-28 10:58:58 +08:00
}
if no_remote_api:
response = run_async(delete_doc(**data))
return response.dict()
else:
response = self.post(
"/knowledge_base/delete_doc",
json=data,
)
return self._check_httpx_json_response(response)
def update_kb_doc(
self,
knowledge_base_name: str,
file_name: str,
not_refresh_vs_cache: bool = False,
no_remote_api: bool = None,
embed_model: str="", embed_model_path: str="",
model_device: str="", embed_engine: str="",
api_key: str=os.environ["OPENAI_API_KEY"],
api_base_url: str = os.environ["API_BASE_URL"],
2023-09-28 10:58:58 +08:00
):
'''
对应api.py/knowledge_base/update_doc接口
'''
if no_remote_api is None:
no_remote_api = self.no_remote_api
if no_remote_api:
response = run_async(update_doc(
knowledge_base_name, file_name, not_refresh_vs_cache, kb_root_path=KB_ROOT_PATH,
api_key=api_key,
api_base_url=api_base_url,
embed_model=embed_model,
embed_model_path=embed_model_path,
model_device=model_device,
embed_engine=embed_engine))
2023-09-28 10:58:58 +08:00
return response.dict()
else:
response = self.post(
"/knowledge_base/update_doc",
json={
"knowledge_base_name": knowledge_base_name,
"file_name": file_name,
"not_refresh_vs_cache": not_refresh_vs_cache,
},
)
return self._check_httpx_json_response(response)
def recreate_vector_store(
self,
knowledge_base_name: str,
allow_empty_kb: bool = True,
vs_type: str = "faiss",
2023-09-28 10:58:58 +08:00
no_remote_api: bool = None,
kb_root_path: str =KB_ROOT_PATH,
embed_model: str="", embed_model_path: str="",
embedding_device: str="", embed_engine: str="",
api_key: str=os.environ["OPENAI_API_KEY"],
api_base_url: str = os.environ["API_BASE_URL"],
2023-09-28 10:58:58 +08:00
):
'''
对应api.py/knowledge_base/recreate_vector_store接口
'''
if no_remote_api is None:
no_remote_api = self.no_remote_api
data = {
"knowledge_base_name": knowledge_base_name,
"allow_empty_kb": allow_empty_kb,
"vs_type": vs_type,
"kb_root_path": kb_root_path,
"api_key": api_key,
"api_base_url": api_base_url,
2023-09-28 10:58:58 +08:00
"embed_model": embed_model,
"embed_model_path": embed_model_path,
"model_device": embedding_device,
"embed_engine": embed_engine
2023-09-28 10:58:58 +08:00
}
if no_remote_api:
response = run_async(recreate_vector_store(**data))
return self._fastapi_stream2generator(response, as_json=True)
else:
response = self.post(
"/knowledge_base/recreate_vector_store",
json=data,
stream=True,
timeout=None,
)
return self._httpx_stream2generator(response, as_json=True)
def web_crawl(
self,
base_url: str,
html_dir: str,
text_dir: str,
do_dfs: bool = False,
reptile_lib: str = "requests",
method: str = "get",
time_sleep: float = 2,
no_remote_api: bool = None
):
'''
根据url来检索
'''
async def _web_crawl(html_dir, text_dir, base_url, reptile_lib, method, time_sleep, do_dfs):
wc = WebCrawler()
try:
if not do_dfs:
wc.webcrawler_single(html_dir=html_dir,
text_dir=text_dir,
base_url=base_url,
reptile_lib=reptile_lib,
method=method,
time_sleep=time_sleep
)
else:
wc.webcrawler_1_degree(html_dir=html_dir,
text_dir=text_dir,
base_url=base_url,
reptile_lib=reptile_lib,
method=method,
time_sleep=time_sleep
)
return {"status": 200, "response": "success"}
except Exception as e:
return {"status": 500, "response": str(e)}
if no_remote_api is None:
no_remote_api = self.no_remote_api
data = {
"base_url": base_url,
"html_dir": html_dir,
"text_dir": text_dir,
"do_dfs": do_dfs,
"reptile_lib": reptile_lib,
"method": method,
"time_sleep": time_sleep,
}
if no_remote_api:
response = run_async(_web_crawl(**data))
return response
else:
raise Exception("not impletenion")
def web_sd_upload(self, file: str = None, filename: str = None):
'''对应file_service/sd_upload_file'''
file, filename = file_normalize(file, filename)
response = self.post(
"/sdfiles/upload",
files={"file": (filename, file)},
)
return self._check_httpx_json_response(response)
def web_sd_download(self, filename: str, save_filename: str = None):
'''对应file_service/sd_download_file'''
save_filename = save_filename or filename
response = self.get(
f"/sdfiles/download",
params={"filename": filename, "save_filename": save_filename}
)
# logger.debug(f"response: {response.json()}")
if filename:
file_content, _ = file_normalize(response.json()["data"])
return file_content, save_filename
return "", save_filename
def web_sd_delete(self, filename: str):
'''对应file_service/sd_delete_file'''
response = self.get(
f"/sdfiles/delete",
params={"filename": filename}
)
return self._check_httpx_json_response(response)
def web_sd_list_files(self, ):
'''对应对应file_service/sd_list_files接口'''
response = self.get("/sdfiles/list",)
return self._check_httpx_json_response(response)
# code base 相关操作
def create_code_base(self, cb_name, zip_file, do_interpret: bool, no_remote_api: bool = None,
embed_model: str="", embed_model_path: str="", embedding_device: str="", embed_engine: str="",
llm_model: str ="", temperature: float= 0.2,
api_key: str=os.environ["OPENAI_API_KEY"],
api_base_url: str = os.environ["API_BASE_URL"],
):
'''
创建 code_base
@param cb_name:
@param zip_path:
@return:
'''
if no_remote_api is None:
no_remote_api = self.no_remote_api
# mkdir
# cb_root_path = CB_ROOT_PATH
mkdir_dir = [
self.cb_root_path,
self.cb_root_path + os.sep + cb_name,
raw_code_path := self.cb_root_path + os.sep + cb_name + os.sep + 'raw_code'
]
for dir in mkdir_dir:
os.makedirs(dir, exist_ok=True)
data = {
"zip_file": zip_file,
"cb_name": cb_name,
"code_path": raw_code_path,
"do_interpret": do_interpret,
"api_key": api_key,
"api_base_url": api_base_url,
"embed_model": embed_model,
"embed_model_path": embed_model_path,
"embed_engine": embed_engine,
"model_name": llm_model,
"temperature": temperature,
"model_device": embedding_device,
}
logger.info('create cb data={}'.format(data))
if no_remote_api:
response = run_async(create_cb(**data))
return response.dict()
else:
response = self.post(
"/code_base/create_code_base",
json=data,
)
logger.info('response={}'.format(response.json()))
return self._check_httpx_json_response(response)
def delete_code_base(self, cb_name: str, no_remote_api: bool = None,
embed_model: str="", embed_model_path: str="", embedding_device: str="", embed_engine: str="",
llm_model: str ="", temperature: float= 0.2,
api_key: str=os.environ["OPENAI_API_KEY"],
api_base_url: str = os.environ["API_BASE_URL"],
):
'''
删除 code_base
@param cb_name:
@return:
'''
if no_remote_api is None:
no_remote_api = self.no_remote_api
data = {
"cb_name": cb_name,
"api_key": api_key,
"api_base_url": api_base_url,
"embed_model": embed_model,
"embed_model_path": embed_model_path,
"embed_engine": embed_engine,
"model_name": llm_model,
"temperature": temperature,
"model_device": embedding_device
}
if no_remote_api:
response = run_async(delete_cb(**data))
return response.dict()
else:
response = self.post(
"/code_base/delete_code_base",
json=cb_name
)
logger.info(response.json())
return self._check_httpx_json_response(response)
def list_cb(self, no_remote_api: bool = None):
'''
列举 code_base
@return:
'''
if no_remote_api is None:
no_remote_api = self.no_remote_api
if no_remote_api:
response = run_async(list_cbs())
return response.data
else:
response = self.get("/code_base/list_code_bases")
data = self._check_httpx_json_response(response)
return data.get("data", [])
2023-09-28 10:58:58 +08:00
def check_error_msg(data: Union[str, dict, list], key: str = "errorMsg") -> str:
'''
return error message if error occured when requests API
'''
if isinstance(data, dict):
if key in data:
return data[key]
if "code" in data and data["code"] != 200:
return data["msg"]
return ""
def check_success_msg(data: Union[str, dict, list], key: str = "msg") -> str:
'''
return error message if error occured when requests API
'''
if (isinstance(data, dict)
and key in data
and "code" in data
and data["code"] == 200):
return data[key]
return ""
if __name__ == "__main__":
api = ApiRequest(no_remote_api=True)
# print(api.chat_fastchat(
# messages=[{"role": "user", "content": "hello"}]
# ))
# with api.chat_chat("你好") as r:
# for t in r.iter_text(None):
# print(t)
# r = api.chat_chat("你好", no_remote_api=True)
# for t in r:
# print(t)
# r = api.duckduckgo_search_chat("室温超导最新研究进展", no_remote_api=True)
# for t in r:
# print(t)
# print(api.list_knowledge_bases())