codefuse-chatbot/examples/agent_examples/searchChatPhase_example.py

54 lines
2.0 KiB
Python
Raw Permalink Normal View History

import os, sys, requests
src_dir = os.path.join(
os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
)
sys.path.append(src_dir)
from configs.model_config import KB_ROOT_PATH, JUPYTER_WORK_PATH
from configs.server_config import SANDBOX_SERVER
from coagent.llm_models.llm_config import EmbedConfig, LLMConfig
from coagent.connector.phase import BasePhase
from coagent.connector.schema import Message, Memory
# log-levelprint prompt和llm predict
os.environ["log_verbose"] = "2"
phase_name = "searchChatPhase"
llm_config = LLMConfig(
model_name="gpt-3.5-turbo", api_key=os.environ["OPENAI_API_KEY"],
api_base_url=os.environ["API_BASE_URL"], temperature=0.3
)
embed_config = EmbedConfig(
embed_engine="model", embed_model="text2vec-base-chinese",
embed_model_path=os.path.join(src_dir, "embedding_models/text2vec-base-chinese")
)
phase = BasePhase(
phase_name, sandbox_server=SANDBOX_SERVER, jupyter_work_path=JUPYTER_WORK_PATH,
embed_config=embed_config, llm_config=llm_config, kb_root_path=KB_ROOT_PATH,
)
# round-1
query_content1 = "美国当前总统是谁?"
query = Message(
role_name="human", role_type="user",
role_content=query_content1, input_query=query_content1, origin_query=query_content1,
search_engine_name="duckduckgo", score_threshold=1.0, top_k=3
)
output_message, output_memory = phase.step(query)
print(output_memory.to_str_messages(return_all=True, content_key="parsed_output_list"))
# round-2
query_content2 = "美国上一任总统是谁,两个人有什么关系没?"
query = Message(
role_name="human", role_type="user",
role_content=query_content2, input_query=query_content2, origin_query=query_content2,
search_engine_name="duckduckgo", score_threshold=1.0, top_k=3
)
output_message, output_memory = phase.step(query)
print(output_memory.to_str_messages(return_all=True, content_key="parsed_output_list"))