codefuse-chatbot/examples/agent_examples/codeChatPhaseLocal_example.py

128 lines
5.0 KiB
Python
Raw Permalink Normal View History

# encoding: utf-8
'''
@author: 温进
@file: codeChatPhaseLocal_example.py
@time: 2024/1/31 下午4:32
@desc:
'''
import os, sys, requests
from concurrent.futures import ThreadPoolExecutor
from tqdm import tqdm
import requests
from typing import List
src_dir = os.path.join(
os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
)
sys.path.append(src_dir)
from configs.model_config import KB_ROOT_PATH, JUPYTER_WORK_PATH, CB_ROOT_PATH
from configs.server_config import SANDBOX_SERVER
from coagent.tools import toLangchainTools, TOOL_DICT, TOOL_SETS
from coagent.llm_models.llm_config import EmbedConfig, LLMConfig
from coagent.connector.phase import BasePhase
from coagent.connector.schema import Message, Memory
from coagent.codechat.codebase_handler.codebase_handler import CodeBaseHandler
# log-levelprint prompt和llm predict
os.environ["log_verbose"] = "1"
llm_config = LLMConfig(
model_name="gpt-3.5-turbo", model_device="cpu",api_key=os.environ["OPENAI_API_KEY"],
api_base_url=os.environ["API_BASE_URL"], temperature=0.3
)
embed_config = EmbedConfig(
embed_engine="model", embed_model="text2vec-base-chinese",
embed_model_path=os.path.join(src_dir, "embedding_models/text2vec-base-chinese")
)
# delete codebase
codebase_name = 'client_nebula'
code_path = '/Users/bingxu/Desktop/工作/大模型/chatbot/test_code_repo/client'
code_path = "D://chromeDownloads/devopschat-bot/client_v2/client"
use_nh = True
do_interpret = False
cbh = CodeBaseHandler(codebase_name, code_path, crawl_type='dir', use_nh=use_nh, local_graph_path=CB_ROOT_PATH,
llm_config=llm_config, embed_config=embed_config)
cbh.delete_codebase(codebase_name=codebase_name)
# initialize codebase
cbh = CodeBaseHandler(codebase_name, code_path, crawl_type='dir', use_nh=use_nh, local_graph_path=CB_ROOT_PATH,
llm_config=llm_config, embed_config=embed_config)
cbh.import_code(do_interpret=do_interpret)
# chat with codebase
phase_name = "codeChatPhase"
phase = BasePhase(
phase_name, sandbox_server=SANDBOX_SERVER, jupyter_work_path=JUPYTER_WORK_PATH,
embed_config=embed_config, llm_config=llm_config, kb_root_path=KB_ROOT_PATH,
)
# remove 这个函数是做什么的 => 基于标签
# 有没有函数已经实现了从字符串删除指定字符串的功能使用的话可以怎么使用写个java代码 => 基于描述
# 有根据我以下的需求用 java 开发一个方法:输入为字符串,将输入中的 .java 字符串给删除掉,然后返回新的字符串 => 基于描述
## 需要启动容器中的nebula采用use_nh=True来构建代码库是可以通过cypher来查询
# round-1
query_content = "代码一共有多少类"
query = Message(
role_name="human", role_type="user",
role_content=query_content, input_query=query_content, origin_query=query_content,
code_engine_name="client_1", score_threshold=1.0, top_k=3, cb_search_type="cypher"
)
output_message1, _ = phase.step(query)
print(output_message1)
# round-2
query_content = "代码库里有哪些函数返回5个就行"
query = Message(
role_name="human", role_type="user",
role_content=query_content, input_query=query_content, origin_query=query_content,
code_engine_name="client_1", score_threshold=1.0, top_k=3, cb_search_type="cypher"
)
output_message2, _ = phase.step(query)
print(output_message2)
# round-3
query_content = "remove 这个函数是做什么的"
query = Message(
role_name="user", role_type="human",
role_content=query_content, input_query=query_content, origin_query=query_content,
code_engine_name=codebase_name, score_threshold=1.0, top_k=3, cb_search_type="tag",
use_nh=False, local_graph_path=CB_ROOT_PATH
)
output_message3, output_memory3 = phase.step(query)
print(output_memory3.to_str_messages(return_all=True, content_key="parsed_output_list"))
#
# # round-4
query_content = "有没有函数已经实现了从字符串删除指定字符串的功能使用的话可以怎么使用写个java代码"
query = Message(
role_name="human", role_type="user",
role_content=query_content, input_query=query_content, origin_query=query_content,
code_engine_name=codebase_name, score_threshold=1.0, top_k=3, cb_search_type="description",
use_nh=False, local_graph_path=CB_ROOT_PATH
)
output_message4, output_memory4 = phase.step(query)
print(output_memory4.to_str_messages(return_all=True, content_key="parsed_output_list"))
# # round-5
query_content = "有根据我以下的需求用 java 开发一个方法:输入为字符串,将输入中的 .java 字符串给删除掉,然后返回新的字符串"
query = Message(
role_name="human", role_type="user",
role_content=query_content, input_query=query_content, origin_query=query_content,
code_engine_name=codebase_name, score_threshold=1.0, top_k=3, cb_search_type="description",
use_nh=False, local_graph_path=CB_ROOT_PATH
)
output_message5, output_memory5 = phase.step(query)
print(output_memory5.to_str_messages(return_all=True, content_key="parsed_output_list"))